• Supports brain function
        • Supports general immune health
        • Supports energy metabolism


Pyridoxal 5'-phosphate (P5P) is a water-soluble vitamin that is part of the B complex and is vital to the health and function of the body's cells.
In all, vitamin B6 comes in six kinds: pyridoxal, pyridoxamine, pyridoxine, and its phosphorylated versions.
This is the bioactive form of vitamin B6: it does not require as much metabolic energy to act as a coenzyme in enzyme reactions containing vitamin B6.
Vitamin B6 is commonly found in dietary supplements as pyridoxine, which must undergo metabolic transformation to become P5P, which requires ATP.
In addition to being a cofactor for many metabolic pathways important to cellular energy production, P5P is involved in over 4% of all enzymatic activities. [1] 
P5P is an enzyme that is involved in: (1) fat, sugar, and protein metabolism; (2) neurotransmitter synthesis; (3) hemoglobin synthesis in red blood cells; and (4) increasing and decreasing gene expression.  


Energy metabolism


  • Pyridoxal 5'-phosphate (P5P) is a cofactor in about 100 essential enzyme reactions, including enzymes of glucose, fatty acid, and amino acid metabolism[2]
  • P5P is a cofactor in the kynurenine pathway; it is required for the synthesis of NAD+ from tryptophan[3]


Hemoglobin synthesis


  • P5P is required as a cofactor in the synthesis of heme, an iron-containing molecule found in hemoglobin[4]


Brain/neurotransmitter function


  • Cofactor for the enzyme aromatic L-amino acid decarboxylase, which catalyzes the synthesis of serotonin from 5-hydroxytryptophan (5-HTP) and dopamine from L-3,4-dihydroxyphenylalanine (L-DOPA) [5–9]
  • Since dopamine is a precursor for noradrenaline, P5P is required for its synthesis [8]
  • Since serotonin is a precursor for melatonin, P5P is required for its synthesis [9]
  • Supports glutamate decarboxylase (GAD) enzyme - GAD catalyzes the synthesis of gamma-aminobutyric acid (GABA) from glutamate [10–15]
  • Supports gamma aminobutyric acid transaminase (GABA-T) enzyme - GABA-T catalyzes the breakdown of gamma-aminobutyric acid (GABA) [10,12]
  • Participates in the metabolism of the neurotransmitters glycine, D-serine, and histamine [16]
  • Supports the synthesis of neurotransmitters involved in memory, executive function, mood regulation, focus, motivation, and sleep regulation [17]
  • May support aspects of dream recall (studies have been at doses ≥100 mg) [18,19]


Immune system


  • Supports adaptive immunity [20–26]
  • Supports immune system communication [27]


Complementary ingredients


  • Vitamin B12 and folic acid (vitamin B9) for cardiovascular support and homocysteine metabolism [28–30], brain support [31], mood [32], and for general well-being [33]
  • L-tryptophan and melatonin for sleep support [34–38]
  • Magnesium, other B-complex vitamins, and melatonin supplementation for sleep support [39]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1]J.M. Berg, J.L. Tymoczko, G.J. Gatto, L. Stryer, eds., Biochemistry, 8th ed, W.H. Freeman and Company, 2015.

[2]Linus Pauling Institute Oregon State University, (n.d.).

[3]A.A.-B. Badawy, Int. J. Tryptophan Res. 10 (2017) 1178646917691938.

[4]G.A. Hunter, G.C. Ferreira, Biochim. Biophys. Acta 1814 (2011) 1467–1473.

[5]G. Delitala, A. Masala, S. Alagna, L. Devilla, J. Clin. Endocrinol. Metab. 42 (1976) 603–606.

[6]D.G. Mappouras, J. Stiakakis, E.G. Fragoulis, Mol. Cell. Biochem. 94 (1990) 147–156.

[7]G.F.G. Allen, V. Neergheen, M. Oppenheim, J.C. Fitzgerald, E. Footitt, K. Hyland, P.T. Clayton, J.M. Land, S.J.R. Heales, J. Neurochem. 114 (2010) 87–96.

[8]M.E. Gnegy, in: S.T. Brady, G.J. Siegel, R.W. Albers, D.L. Price (Eds.), Basic Neurochemistry (Eighth Edition), Academic Press, New York, 2012, pp. 283–299.

[9]J.G. Hensler, in: S.T. Brady, G.J. Siegel, R.W. Albers, D.L. Price (Eds.), Basic Neurochemistry (Eighth Edition), Academic Press, New York, 2012, pp. 300–322.

[10]T.S. Rajeswari, E. Radha, Exp. Gerontol. 19 (1984) 87–93.

[11]M. Díaz-Muñoz, R. Tapia, J. Neurosci. Res. 20 (1988) 376–382.

[12]V.V. Tsybul’skiĭ, E.R. Nagiev, Radiobiologiia 31 (1991) 201–208.

[13]O.A.C. Petroff, Neuroscientist 8 (2002) 562–573.

[14]D.Y. Yoo, W. Kim, D.W. Kim, K.-Y. Yoo, J.Y. Chung, H.Y. Youn, Y.S. Yoon, S.Y. Choi, M.-H. Won, I.K. Hwang, Neurochem. Res. 36 (2011) 713–721.

[15]Y. Huang, L. Su, J. Wu, PLoS One 11 (2016) e0157466.

[16]P.T. Clayton, J. Inherit. Metab. Dis. 29 (2006) 317–326.

[17]M. Ebadi, Neurochem. Int. 3 (1981) 181–205.

[18]M. Ebben, A. Lequerica, A. Spielman, Percept. Mot. Skills 94 (2002) 135–140.

[19]D.J. Aspy, N.A. Madden, P. Delfabbro, Percept. Mot. Skills 125 (2018) 451–462.

[20]M.C. Talbott, L.T. Miller, N.I. Kerkvliet, Am. J. Clin. Nutr. 46 (1987) 659–664.

[21]S.N. Meydani, J.D. Ribaya-Mercado, American Journal of … (1991).

[22]K. Folkers, M. Morita, J. McRee Jr, Biochem. Biophys. Res. Commun. 193 (1993) 88–92.

[23]S. Doke, N. Inagaki, T. Hayakawa, H. Tsuge, Biosci. Biotechnol. Biochem. 61 (1997) 1331–1336.

[24]H.-K. Kwak, C.M. Hansen, J.E. Leklem, K. Hardin, T.D. Shultz, J. Nutr. 132 (2002) 3308–3313.

[25]C.-H. Cheng, S.-J. Chang, B.-J. Lee, K.-L. Lin, Y.-C. Huang, Eur. J. Clin. Nutr. 60 (2006) 1207–1213.

[26]C. Kobayashi, K. Kurohane, Y. Imai, Biol. Pharm. Bull. 35 (2012) 532–538.

[27]S.-C. Huang, J.C.-C. Wei, D.J. Wu, Y.-C. Huang, Eur. J. Clin. Nutr. 64 (2010) 1007–1013.

[28]J. Selhub, Annu. Rev. Nutr. 19 (1999) 217–246.

[29]E. Lonn, S. Yusuf, M.J. Arnold, P. Sheridan, J. Pogue, M. Micks, M.J. McQueen, J. Probstfield, G. Fodor, C. Held, J. Genest Jr, Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators, N. Engl. J. Med. 354 (2006) 1567–1577.

[30]D. Serapinas, E. Boreikaite, A. Bartkeviciute, R. Bandzeviciene, M. Silkunas, D. Bartkeviciene, Reprod. Toxicol. 72 (2017) 159–163.

[31]G. Douaud, H. Refsum, C.A. de Jager, R. Jacoby, T.E. Nichols, S.M. Smith, A.D. Smith, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 9523–9528.

[32]O.P. Almeida, K. Marsh, H. Alfonso, L. Flicker, T.M.E. Davis, G.J. Hankey, Ann. Neurol. 68 (2010) 503–510.

[33]C. Hallert, M. Svensson, J. Tholstrup, B. Hultberg, Aliment. Pharmacol. Ther. 29 (2009) 811–816.

[34]A.D. Volpe, A.D. Lucia, C. Pirozzi, V. Pastore, J Int Adv Otol 13 (2017) 69–73.

[35]A. Della Volpe, L. Dipietro, G. Ricci, V. Pastore, M. Paccone, C. Pirozzi, A. Di Stadio, Int. J. Pediatr. Otorhinolaryngol. 115 (2018) 171–174.

[36]S. Picone, P. Ariganello, V. Mondì, F. Di Palma, L. Martini, S. Marziali, G. Fariello, P. Paolillo, Ital. J. Pediatr. 45 (2019) 122.

[37]P. Lemoine, J.-C. Bablon, C. Da Silva, Complement. Ther. Med. 45 (2019) 104–108.

[38]C. Bravaccio, G. Terrone, R. Rizzo, M. Gulisano, M. Tosi, P. Curatolo, L. Emberti Gialloreti, Minerva Pediatr. 72 (2020) 30–36.

[39]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, Torello, Open Access Macedonian Journal of Medical Sciences 7 (2019).