• Supports sleep
      • Supports cognitive function


Adenosine, cytidine, guanosine, and thymidine are the other four standard nucleosides. Uridine is one of them.


Compounds like these form the building blocks of the body's information carriers (DNA and RNA), and are essential for cellular metabolism.


As the carrier of chemical energy required by cells, ATP-the "A" stands for adenosine-plays an important role in cell function.


A subset of metabolic reactions involves uridine and two other high-energy non-ATP molecules.


As an activator of substrates in some specific metabolic reactions, uridine is needed to produce UTP (made from uridine instead of adenosine). CTP can also be supported by uridine, which can be converted into cytidine.


As such, it is used to synthesize the glycerophospholipids (including phosphatidylcholine in the Kennedy pathway) necessary for the functioning of healthy cell membranes throughout the body. Additionally, uridine may support a variety of neurotransmitters and neuroregulatory processes.


There is also evidence that uridine crosses the blood brain barrier [1–6]. Because of its structural and functional properties, it has been used as a nootropic. Natural sleep promoter uridine is produced by the brain and acts by means of uridine receptors in the brain areas that control natural sleep [7,8].


Brain function


  • Supports memory [9]

  • Supports brain membrane glycerophospholipids [10–12]

  • Supports the Kennedy (or CDP-choline) pathway, which has a central role in choline homeostasis [2,13,14]

  • Supports phosphatidylcholine synthesis [2,13,14]

  • Supports acetylcholine synthesis [2,10,13,14]

  • Supports cytidine levels and brain CDP-choline [1,15]

  • Supports activity of GABA receptors [16,17]

  • Supports GABAergic neurotransmission [18,19]

  • Supports dopamine release [20]

  • Acts as a neurotransmitter via purinergic receptors [21,22]

  • Supports neurite outgrowth [20,23]




  • Considered an endogenous sleep-promoting substance [7,8,24]

  • Supports slow wave sleep (SWS) and REM sleep [24–28]


Other effects


  • Supports cardioprotective functions [29]


Complementary ingredients


  • DHA in supporting memory and in upregulating dendritic spine density, synaptic protein levels, and phospholipids in the brain [11,30–33]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1] M. Cansev, C.J. Watkins, E.M. van der Beek, R.J. Wurtman, Brain Res. 1058 (2005) 101–108.

[2] F. Gibellini, T.K. Smith, IUBMB Life 62 (2010) 414–428.

[3] G.B. Weiss, Life Sci. 56 (1995) 637–660.

[4] U.I. Richardson, C.J. Watkins, C. Pierre, I.H. Ulus, R.J. Wurtman, Brain Res. 971 (2003) 161–167.

[5] I.H. Ulus, R.J. Wurtman, C. Mauron, J.K. Blusztajn, Brain Res. 484 (1989) 217–227.

[6] E.M. Cornford, W.H. Oldendorf, Biochim. Biophys. Acta 394 (1975) 211–219.

[7] Y. Komoda, M. Ishikawa, H. Nagasaki, M. Iriki, K. Honda, S. Inoue, A. Higashi, K. Uchizono, BIOMEDICAL RESEARCH-TOKYO 4 (1983) 223–227.

[8] T. Kimura, I.K. Ho, I. Yamamoto, Sleep 24 (2001) 251–260.

[9] L.A. Teather, R.J. Wurtman, J. Nutr. 136 (2006) 2834–2837.

[10] L. Wang, M.A. Albrecht, R.J. Wurtman, Brain Res. 1133 (2007) 42–48.

[11] R.J. Wurtman, I.H. Ulus, M. Cansev, C.J. Watkins, L. Wang, G. Marzloff, Brain Res. 1088 (2006) 83–92.

[12] N. Agarwal, Y.-H. Sung, J.E. Jensen, G. daCunha, D. Harper, D. Olson, P.F. Renshaw, Bipolar Disord. 12 (2010) 825–833.

[13] Z. Li, D.E. Vance, J. Lipid Res. 49 (2008) 1187–1194.

[14] P. Fagone, S. Jackowski, Biochim. Biophys. Acta 1831 (2013) 523–532.

[15] I.H. Ulus, C.J. Watkins, M. Cansev, R.J. Wurtman, Cell. Mol. Neurobiol. 26 (2006) 563–577.

[16] P. Guarneri, R. Guarneri, C. Mocciaro, F. Piccoli, Neurochem. Res. 8 (1983) 1537–1545.

[17] P. Guarneri, R. Guarneri, V. La Bella, F. Piccoli, Epilepsia 26 (1985) 666–671.

[18] P. Liu, C. Wu, W. Song, L. Yu, X. Yang, R. Xiang, F. Wang, J. Yang, Eur. Neuropsychopharmacol. 24 (2014) 1557–1566.

[19] P. Liu, X. Che, L. Yu, X. Yang, N. An, W. Song, C. Wu, J. Yang, Pharmacol. Biochem. Behav. 163 (2017) 74–82.

[20] L. Wang, A.M. Pooler, M.A. Albrecht, R.J. Wurtman, J. Mol. Neurosci. 27 (2005) 137–145.

[21] A. Brunschweiger, C.E. Müller, Curr. Med. Chem. 13 (2006) 289–312.

[22] A. Dobolyi, G. Juhász, Z. Kovács, J. Kardos, Curr. Top. Med. Chem. 11 (2011) 1058–1067.

[23] A.M. Pooler, D.H. Guez, R. Benedictus, R.J. Wurtman, Neuroscience 134 (2005) 207–214.

[24] K. Honda, Y. Komoda, S. Nishida, H. Nagasaki, A. Higashi, K. Uchizono, S. Inoué, Neurosci. Res. 1 (1984) 243–252.

[25] M. Kimura-Takeuchi, S. Inoué, Brain Res. Bull. 31 (1993) 33–37.

[26] S. Inoué, M. Kimura-Takeuchi, K. Honda, Endocrinol. Exp. 24 (1990) 69–76.

[27] S. Inoue, K. Honda, Y. Komoda, K. Uchizono, R. Ueno, O. Hayaishi, Proceedings of the National Academy of Sciences 81 (1984) 6240–6244.

[28] M. Kimura-Takeuchi, S. Inoué, Neurosci. Lett. 157 (1993) 17–20.

[29] I.B. Krylova, V.V. Bulion, E.N. Selina, G.D. Mironova, N.S. Sapronov, Bull. Exp. Biol. Med. 153 (2012) 644–646.

[30] S. Holguin, Y. Huang, J. Liu, R. Wurtman, Behav. Brain Res. 191 (2008) 11–16.

[31] S. Holguin, J. Martinez, C. Chow, R. Wurtman, FASEB J. 22 (2008) 3938–3946.

[32] T. Sakamoto, M. Cansev, R.J. Wurtman, Brain Res. 1182 (2007) 50–59.

[33] M. Cansev, R.J. Wurtman, Neuroscience 148 (2007) 421–431.