Creatine | Malate | Malic Acid BENEFITS

KEY BENEFITS OF TRICREATINE MALATE

    • Supports cognition
    • Supports cardiac function
    • Supports muscle performance
    • Supports mitochondrial efficiency

ABOUT TRICREATINE MALATE

Among the components of tricreatine malate are three creatines bound to one malate. Each of these molecules is essential for the efficient production of energy in cells.

 

Originally discovered in skeletal muscles, creatine gets its name from the Greek word kreas, meaning "meat.".

 

A key role is played by it in tissues like muscles and the brain, which require significant amounts of energy. It concentrates on muscles, which makes red meat, pork, lamb, poultry, and fish the best sources of food.

 

People who do not consume meat may not produce sufficient creatine to maintain optimal tissue status, even though they can make some creatine in the body. Therefore, vegans and vegetarians should take creatine as a dietary supplement.

 

Phosphocreatine (phosphagen) is used to create creatine. An important function of this system is to regenerate ATP from ADP in tissues during high energy demand. It is for this reason that creatine is described as an ATP "buffer."

 

Malate is a salt of malic acid, which has been first identified in apple juice, leading to its name, which comes from the Latin for apple (mālum).

 

As an intermediate in the citric acid cycle, malate aids in converting food into energy (ATP) and helping build-essential biomolecules. This cycle can be sped up by adding intermediates like malate (i.e., the cycle will spin faster).


TRICREATINE MALATE FULL BENEFITS

Mitochondrial biogenesis

 

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α)[4]
  • Upregulates transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM])[4]
  • Upregulates mitochondrial DNA (mtDNA)[4]

 

Mitochondrial structure and function

 

  • Protects mitochondrial structure and function[4–6]
  • Supports mitochondrial membrane potential[4,5]

 

Signaling pathways

 

  • Upregulates AMP-activated protein kinase (AMPK) signaling[4,7–10]

 

Exercise performance (ergogenic effects)

 

  • Upregulates the muscle pool of phosphocreatine to be used for ATP regeneration[10–15]
  • Supports strength performance[12–14,16–21]
  • Upregulates lean mass[14,16–21]
  • Supports muscle structure and function[12–14,16]
  • Upregulates the skeletal muscle glucose transporter GLUT-4[8,9,12,22]

 

Cardiovascular function

 

  • Supports energy generation in cardiac muscle[23]
  • Protects cardiac muscle against ischemia/hypoxia[24]

 

Neuroprotective effects

 

  • Protects neurons from cell damage and toxicity[5,6,25–28]

 

Complementary ingredients

 

  • CoQ10 and lipoic acid – support mitochondrial function[29]
  • L-carnitine and L-leucine – support muscle mass and strength[30]

 

Krebs cyle (citric acid cycle) function

 

  • Supports energy metabolism through the citric acid cycle[31]
  • Supports energy metabolism through the malate-aspartate shuttle[31]
  • Upregulates the NAD+/NAPH ratio[32]

 

Mitochondrial function

 

  • Supports mitochondrial membrane potential[32,33]
  • Supports mitochondrial complex I-V performance[33]

 

Antioxidant defenses

 

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], glutathione peroxidase [GPx])[34–36]
  • Downregulates oxidative stress and the generation of reactive oxygen species (ROS)[36]
  • Replenishes glutathione (GSH) levels[36]

 

Cellular signaling

 

  • Downregulates the expression of proinflammatory molecules (tumor necrosis factor alpha [TNFα])[34]

 

Cardiovascular function

 

  • Protects cardiac muscle from ischemic injury[34]

 

Longevity

 

  • Increases lifespan (Caenorhabditis elegans)[32]

TRI-CREATINE MALATE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] J. T. Brosnan, R. P. da Silva, M. E. Brosnan, Amino Acids. 40, 1325–1331 (2011).
[2] M. E. Brosnan, J. T. Brosnan, Amino Acids. 48, 1785–1791 (2016).
[3] R. Cooper, F. Naclerio, J. Allgrove, A. Jimenez, J. Int. Soc. Sports Nutr. 9, 33 (2012).
[4] E. Barbieri et al., Oxid. Med. Cell. Longev. 2016, 5152029 (2016).
[5] L. M. Rambo et al., Amino Acids. 44, 857–868 (2013).
[6] P. Klivenyi et al., Nat. Med. 5, 347–350 (1999).
[7] L. Zhang et al., J. Agric. Food Chem. 65, 6991–6999 (2017).
[8] C. R. R. Alves et al., Amino Acids. 43, 1803–1807 (2012).
[9] J.-S. Ju, J. L. Smith, P. J. Oppelt, J. S. Fisher, Am. J. Physiol. Endocrinol. Metab. 288, E347–52 (2005).
[10] R. B. Ceddia, G. Sweeney, J. Physiol. 555, 409–421 (2004).
[11] B. Banerjee et al., Magn. Reson. Imaging. 28, 698–707 (2010).
[12] B. Gualano et al., Med. Sci. Sports Exerc. 43, 770–778 (2011).
[13] C. R. R. Alves et al., Arthritis Care Res. . 65, 1449–1459 (2013).
[14] D. G. Burke et al., Med. Sci. Sports Exerc. 35, 1946–1955 (2003).
[15] J. T. Brosnan, M. E. Brosnan, Annu. Rev. Nutr. 27, 241–261 (2007).
[16] J. S. Volek et al., Med. Sci. Sports Exerc. 31, 1147–1156 (1999).
[17] S. L. Nissen, R. L. Sharp, J. Appl. Physiol. 94, 651–659 (2003).
[18] R. B. Kreider, Mol. Cell. Biochem. 244, 89–94 (2003).
[19] L. A. Gotshalk et al., Eur. J. Appl. Physiol. 102, 223–231 (2008).
[20] L. A. Gotshalk et al., Med. Sci. Sports Exerc. 34, 537–543 (2002).
[21] J. D. Branch, Int. J. Sport Nutr. Exerc. Metab. 13, 198–226 (2003).
[22] B. Op ’t Eijnde, B. Ursø, E. A. Richter, P. L. Greenhaff, P. Hespel, Diabetes. 50, 18–23 (2001).
[23] V. Saks et al., J. Physiol. 571, 253–273 (2006).
[24] C. A. Lygate et al., Cardiovasc. Res. 96, 466–475 (2012).
[25] G. J. Brewer, T. W. Wallimann, J. Neurochem. 74, 1968–1978 (2000).
[26] B. Valastro, A. Dekundy, W. Danysz, G. Quack, Behav. Brain Res. 197, 90–96 (2009).
[27] R. T. Matthews et al., J. Neurosci. 18, 156–163 (1998).
[28] P. G. Sullivan, J. D. Geiger, M. P. Mattson, S. W. Scheff, Ann. Neurol. 48, 723–729 (2000).
[29] M. C. Rodriguez et al., Muscle Nerve. 35, 235–242 (2007).
[30] M. Evans et al., Nutr. Metab. . 14, 7 (2017).
[31] J. M. Berg, J. L. Tymoczko, G. J. Gatto, L. Stryer, Eds., Biochemistry (W.H. Freeman and Company, 8th ed., 2015).
[32] C. B. Edwards, N. Copes, A. G. Brito, J. Canfield, P. C. Bradshaw, PLoS One. 8, e58345 (2013).
[33] J.-L. Wu, Q.-P. Wu, Y.-P. Peng, J.-M. Zhang, Physiol. Res. 60, 329–336 (2011).
[34] S. Ding, Y. Yang, J. Mei, Evid. Based. Complement. Alternat. Med. 2016, 3803657 (2016).
[35] X. Zeng, J. Wu, Q. Wu, J. Zhang, Physiol. Res. 64, 71–78 (2015).
[36] J.-L. Wu et al., Physiol. Res. 57, 261–268 (2008).