• Supports heart health
        • Supports healthy vision
        • Supports brain health


Taurine is a sulfur-containing amino acid (2-aminoethanesulfonic acid). A person's body can produce it and find it in their diet, and the combination determines how much they have stored.


The best food sources are animal products like shellfish, fish, poultry and red meat. Almost no taurine is found in vegan diets [1].

Among the free amino acids in muscle, heart, brain, and retina, taurine is the most abundant.


In addition to its roles as an antioxidant and neuromodulator, taurine plays an important role in osmoregulation.


The retina, lens, cornea, and other ocular tissues contain taurine, which is vital to the function of the retinal and photoreceptor cells.


In addition, taurine provides neuroprotective functions to the central nervous system [2,3].


There is evidence that taurine may enhance lipid nutrient bioavailability [4].


Brain function


  • Supports synaptic long-term potentiation [7]
  • Supports GABAergic neurotransmission [8–11]
  • Supports glycinergic neurotransmission [12]
  • Supports hippocampal neurotransmission [13]
  • Supports brain-derived neurotrophic factor (BDNF) [11]
  • Supports neuroprotective functions [14]
  • Supports cerebral blood flow [14]
  • Supports neuronal mitochondrial function [14]
  • Supports short-term memory [11]




  • Supports positive mood responses and calm behaviors [12,15–19]




  • Supports resistance to visual fatigue [20]
  • Supports synaptic transmission in retinal ganglion cells [21]
  • Supports eyes against stress from blue light and ultraviolet light [22–24]
  • Supports retinal and optic nerve neuroprotective functions [25–34]
  • Supports retinal antioxidant defense functions [27,28,35]
  • Supports photoreceptor cell visual function [25]


Mitochondrial function and antioxidant defenses


  • Supports mitochondrial respiratory chain function [36,37]
  • Supports antioxidant defenses [38–41]
  • Supports tissue protection from oxidative damage [16,41–43]


Cardiovascular function


  • Supports vascular endothelial cell function [16,44]
  • Supports cardiac muscle cell function [42,43]
  • Supports the generation of new blood vessels (angiogenesis) [45]
  • Supports healthy blood flow [44]




  • Supports healthy insulin sensitivity and glucose metabolism [38,46,47]  


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1]S.A. Laidlaw, T.D. Shultz, J.T. Cecchino, J.D. Kopple, Am. J. Clin. Nutr. 47 (1988) 660–663.

[2]S.S. Oja, P. Saransaari, Adv. Exp. Med. Biol. 975 Pt 1 (2017) 89–94.

[3]H. Ripps, W. Shen, Mol. Vis. 18 (2012) 2673–2686.

[4]A.M. Petrosian, J.E. Haroutounian, Amino Acids 19 (2000) 409–421.

[5]S.K. Rana, T.A. Sanders, Br. J. Nutr. 56 (1986) 17–27.

[6]S.A. Laidlaw, M. Grosvenor, J.D. Kopple, JPEN J. Parenter. Enteral Nutr. 14 (1990) 183–188.

[7]N. del Olmo, L.M. Suárez, L.M. Orensanz, F. Suárez, J. Bustamante, J.M. Duarte, R. Martín del Río, J.M. Solís, Eur. J. Neurosci. 19 (2004) 1875–1886.

[8]K. Kuriyama, T. Hashimoto, in: S. Schaffer, J.B. Lombardini, R.J. Huxtable (Eds.), Taurine 3: Cellular and Regulatory Mechanisms, Springer US, Boston, MA, 1998, pp. 329–337.

[9]M.H. Bureau, R.W. Olsen, Eur. J. Pharmacol. 207 (1991) 9–16.

[10]P. Kontro, S.S. Oja, Neuropharmacology 29 (1990) 243–247.

[11]G. Caletti, F.B. Almeida, G. Agnes, M.S. Nin, H.M.T. Barros, R. Gomez, Behav. Brain Res. 283 (2015) 11–15.

[12]C.G. Zhang, S.-J. Kim, Ann. Nutr. Metab. 51 (2007) 379–386.

[13]F. Franconi, G. Diana, A. Fortuna, G. Galietta, G. Trombetta, G. Valentini, G. Seghieri, A. Loizzo, Brain Res. Bull. 63 (2004) 491–497.

[14]Q. Wang, W. Fan, Y. Cai, Q. Wu, L. Mo, Z. Huang, H. Huang, Amino Acids 48 (2016) 2169–2177.

[15]W. Iio, N. Matsukawa, T. Tsukahara, A. Toyoda, Amino Acids 43 (2012) 2037–2046.

[16]G. Caletti, D.B. Olguins, E.F. Pedrollo, H.M.T. Barros, R. Gomez, Amino Acids 43 (2012) 1525–1533.

[17]A. Toyoda, W. Iio, Adv. Exp. Med. Biol. 775 (2013) 29–43.

[18]S.W. Chen, W.X. Kong, Y.J. Zhang, Y.L. Li, X.J. Mi, X.S. Mu, Life Sci. 75 (2004) 1503–1511.

[19]W.X. Kong, S.W. Chen, Y.L. Li, Y.J. Zhang, R. Wang, L. Min, X. Mi, Pharmacol. Biochem. Behav. 83 (2006) 271–276.

[20]M. Zhang, L.F. Bi, Y.D. Ai, L.P. Yang, H.B. Wang, Z.Y. Liu, M. Sekine, S. Kagamimori, Amino Acids 26 (2004) 59–63.

[21]Z. Jiang, S. Bulley, J. Guzzone, H. Ripps, W. Shen, Adv. Exp. Med. Biol. 775 (2013) 53–68.

[22]H. Pasantes-Morales, C. Cruz, Brain Res. 330 (1985) 154–157.

[23]W. Dayang, P. Dongbo, Cutan. Ocul. Toxicol. 37 (2018) 240–244.

[24]W. Dayang, P. Dongbo, Cutan. Ocul. Toxicol. 37 (2018) 90–95.

[25]Y. Tao, M. He, Q. Yang, Z. Ma, Y. Qu, W. Chen, G. Peng, D. Teng, Drug Des. Devel. Ther. 13 (2019) 2689–2702.

[26]Y. Fan, J. Lai, Y. Yuan, L. Wang, Q. Wang, F. Yuan, Curr. Eye Res. 45 (2020) 52–63.

[27]A.J.A. Jafri, R. Agarwal, I. Iezhitsa, P. Agarwal, N.M. Ismail, Amino Acids 51 (2019) 641–646.

[28]N.N. Nor Arfuzir, R. Agarwal, I. Iezhitsa, P. Agarwal, S. Sidek, N.M. Ismail, Neural Regeneration Res. 13 (2018) 2014–2021.

[29]N. Froger, F. Jammoul, D. Gaucher, L. Cadetti, H. Lorach, J. Degardin, D. Pain, E. Dubus, V. Forster, I. Ivkovic, M. Simonutti, J.-A. Sahel, S. Picaud, Adv. Exp. Med. Biol. 775 (2013) 69–83.

[30]N. Froger, L. Cadetti, H. Lorach, J. Martins, A.-P. Bemelmans, E. Dubus, J. Degardin, D. Pain, V. Forster, L. Chicaud, I. Ivkovic, M. Simonutti, S. Fouquet, F. Jammoul, T. Léveillard, R. Benosman, J.-A. Sahel, S. Picaud, PLoS One 7 (2012) e42017.

[31]K. Zeng, H. Xu, M. Mi, K. Chen, J. Zhu, L. Yi, T. Zhang, Q. Zhang, X. Yu, Neurochem. Res. 35 (2010) 1566–1574.

[32]X. Yu, Z. Xu, M. Mi, H. Xu, J. Zhu, N. Wei, K. Chen, Q. Zhang, K. Zeng, J. Wang, F. Chen, Y. Tang, Neurochem. Res. 33 (2008) 500–507.

[33]X. Yu, K. Chen, N. Wei, Q. Zhang, J. Liu, M. Mi, Br. J. Nutr. 98 (2007) 711–719.

[34]W. Hadj-Saïd, V. Fradot, I. Ivkovic, J.-A. Sahel, S. Picaud, N. Froger, Adv. Exp. Med. Biol. 975 Pt 2 (2017) 687–701.

[35]M.A.S. Di Leo, S.A. Santini, S. Cercone, D. Lepore, N. Gentiloni Silveri, S. Caputo, A.V. Greco, B. Giardina, F. Franconi, G. Ghirlanda, Amino Acids 23 (2002) 401–406.

[36]C.J. Jong, J. Azuma, S. Schaffer, Amino Acids 42 (2012) 2223–2232.

[37]S.W. Schaffer, J. Azuma, M. Mozaffari, Can. J. Physiol. Pharmacol. 87 (2009) 91–99.

[38]A.T.A. Nandhini, V. Thirunavukkarasu, M.K. Ravichandran, C.V. Anuradha, Singapore Med. J. 46 (2005) 82–87.

[39]P.S. Devamanoharan, A.H. Ali, S.D. Varma, Free Radic. Res. 29 (1998) 189–195.

[40]G. Guz, E. Oz, N. Lortlar, N.N. Ulusu, N. Nurlu, B. Demirogullari, S. Omeroglu, S. Sert, C. Karasu, Amino Acids 32 (2007) 405–411.

[41]H. Tabassum, S. Parvez, H. Rehman, B. Dev Banerjee, D. Siemen, S. Raisuddin, Hum. Exp. Toxicol. 26 (2007) 509–518.

[42]J. Hanna, R. Chahine, G. Aftimos, M. Nader, A. Mounayar, F. Esseily, S. Chamat, Exp. Toxicol. Pathol. 56 (2004) 189–194.

[43]R. Kingston, C.J. Kelly, P. Murray, Curr. Pharm. Des. 10 (2004) 2401–2410.

[44]M.A. Moloney, R.G. Casey, D.H. O’Donnell, P. Fitzgerald, C. Thompson, D.J. Bouchier-Hayes, Diab. Vasc. Dis. Res. 7 (2010) 300–310.

[45]Y.-Y. Baek, D.H. Cho, J. Choe, H. Lee, D. Jeoung, K.-S. Ha, M.-H. Won, Y.-G. Kwon, Y.-M. Kim, Eur. J. Pharmacol. 674 (2012) 188–199.

[46]A.T.A. Nandhini, V. Thirunavukkarasu, C.V. Anuradha, Diabetes Metab. 31 (2005) 337–344.

[47]A.T.A. Nandhini, C.V. Anuradha, Amino Acids 22 (2002) 27–38.