SOPHORAE JAPONICA L. FLOWER EXTRACT (95% RUTIN) BENEFITS

KEY BENEFITS OF RUTIN

        • Supports insulin signaling and glucose metabolism
        • Support cardiovascular function
        • Supports brain function
        • Supports thyroid function
        • Supports healthy weight
        • Supports cellular responses and antioxidant defenses
        • Supports healthy gut microbiota
        • Supports mitochondrial function and cellular energy
        • Supports exercise performance
        • Supports metabolism

ABOUT RUTIN

The flavonoid Rutin is made up of quercetin and rutinose, a disaccharide.

 

Among its other names are rutoside, quercetin-3-O-rutinoside and sophorin. Rutin is named after the plant Ruta graveolens (Rue).

 

In the past, rutin was considered to be a component of what was once called vitamin P, but is now called citrus bioflavonoids.

 

The highest amounts of Rutin are found in capers, black olives, buckwheat, and asparagus, although it can be found in a wide variety of plants.

 

Rutin is used most commonly for maintaining healthy veins.


RUTIN FULL BENEFITS

Mitochondrial biogenesis and function

 

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and PGC1β[1–5]
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor 1 [Nrf-1], Nrf-2, mitochondrial transcription factor A [TFAM])[1,2]
  • Supports mitochondrial DNA (mtDNA)[1,2]
  • Upregulates mitochondrial size/number[1,2]
  • Upregulates mitochondrial oxidative phosphorylation proteins[2]
  • Protects from mitochondrial dysfunction[6,7]

 

Signaling pathways

 

  • Upregulates AMP-activated protein kinase (AMPK)[1,3,4,8]
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα)[2]
  • Upregulates NAD+ levels - inhibits poly (ADP-ribose) polymerase-1 (PARP-1)[9]

 

Glucose metabolism

 

  • Supports healthy blood glucose levels[10–16]
  • Supports healthy insulin signaling[7,10–13,17]
  • Upregulates GLUT4[10]

 

Body weight

 

    • Supports healthy body weight[1]
    • Downregulates fat accumulation and blood/liver lipid levels[1,7]
    • Downregulates lipogenesis — downregulates peroxisome proliferator-activated receptor gamma (PPARγ)[1,4]
    • Supports mild uncoupling including the differentiation of brown adipose tissue and uncoupling protein 1 (UCP1)[2]

 

Exercise performance (ergogenic effect)

 

    • Supports endurance performance[5,18]
    • Downregulates lactic acid production[5]

 

Antioxidant defenses

 

    • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione reductase [GR])[4–6,9,11,19–23]
    • Downregulates oxidative stress[5–7,9,11,20–25]
    • Supports resistance to oxidative stress[19]
    • Replenishes glutathione (GSH) levels[6,9,11,20–26]

 

Cellular signaling

 

  • Downregulates the expression of proinflammatory mediators – nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), interleukin 8 (IL-8), tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), nitric oxide (NO) inducible NO synthase (iNOS)[2,6,9,24]

 

Cardiovascular function

 

    • Protects cardiovascular structure and function[13,14,27–29]
    • Supports endothelial function – upregulates endothelial NO production[30]
    • Supports healthy blood triglycerides and cholesterol levels[1,13,14,25]
    • Supports healthy vascular function[1]

 

Brain function

 

    • Neuroprotective against ischemia/hypoxia[20,31]
    • Neuroprotective against neurotoxic agents[6,32]
    • Neuroprotective against oxidative stress[33]
    • Regulates neural cytokine signaling[6,9]
    • Protects cognitive function (spatial learning and memory)[9,31,32]

 

Thyroid function

 

    • Promotes thyroid iodide uptake[34,35]

 

Protection of other organs and systems

 

    • Protects liver function[7,13,21,25]
    • Protects kidney structure and function[15,22,23,36,37]
    • Protects gastrointestinal structure and function[26,38]

 

Gut microbiota

 

    • Regulates the composition of the gut microbiota[39]
    • Regulates gut microbial metabolism[39,40]
    • Modulates gut microbial gene expression[40]

 

Healthspan /lifespan extension

 

    • Upregulates SIRT-1[1,2,5,19,24]
    • Upregulates fork head box (FoxO) transcription factor[19]
    • Extends lifespan (Drosophila melanogaster and mice)[16,19]

SOPHORAE JAPONICA L. FLOWER EXTRACT (95% RUTIN) CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] S. Seo et al., Nutrients. 7, 8152–8169 (2015).
[2] X. Yuan et al., FASEB J. 31, 333–345 (2017).
[3] N. Chen et al., J. Physiol. Biochem. 71, 733–742 (2015).
[4] C.-H. Wu et al., J. Food Sci. 76, T65–72 (2011).
[5] K.-Y. Su et al., Int. J. Med. Sci. 11, 528–537 (2014).
[6] S.-W. Wang et al., Neurotoxicology. 33, 482–490 (2012).
[7] T. Li et al., Food Funct. 7, 1147–1154 (2016).
[8] E. P. Cai, J.-K. Lin, J. Agric. Food Chem. 57, 9817–9827 (2009).
[9] H. Javed et al., Neuroscience. 210, 340–352 (2012).
[10] C.-Y. Hsu et al., Mol. Nutr. Food Res. 58, 1168–1176 (2014).
[11] P. Stanley Mainzen Prince, N. Kamalakkannan, J. Biochem. Mol. Toxicol. 20, 96–102 (2006).
[12] N. Kamalakkannan, P. S. M. Prince, Basic Clin. Pharmacol. Toxicol. 98, 97–103 (2006).
[13] A. A. H. Fernandes et al., Biomed. Pharmacother. 64, 214–219 (2010).
[14] K. M. Krishna et al., Can. J. Physiol. Pharmacol. 83, 343–355 (2005).
[15] N. Kamalakkannan, P. Stanely Mainzen Prince, J. Pharm. Pharmacol. 58, 1091–1098 (2006).
[16] J. F. Aitken et al., Biochem. Biophys. Res. Commun. 482, 625–631 (2017).
[17] T. Hu et al., J. Nutr. Biochem. 47, 21–28 (2017).
[18] I. M. Borisov, Vopr. Pitan., 35–38 (1980).
[19] D. Chattopadhyay et al., Biogerontology. 18, 397–411 (2017).
[20] M. M. Khan et al., Brain Res. 1292, 123–135 (2009).
[21] R. A. Khan, M. R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12, 178 (2012).
[22] R. A. Khan, M. R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12, 204 (2012).
[23] A. Korkmaz, D. Kolankaya, J. Surg. Res. 164, 309–315 (2010).
[24] M.-R. Khajevand-Khazaei et al., Eur. J. Pharmacol. 833, 307–313 (2018).
[25] S. S. Al-Rejaie et al., BMC Complement. Altern. Med. 13, 136 (2013).
[26] C. La Casa, I. Villegas, C. Alarcón de la Lastra, V. Motilva, M. J. Martín Calero, J. Ethnopharmacol. 71, 45–53 (2000).
[27] A. Annapurna, C. S. Reddy, R. B. Akondi, S. R. C. Rao, J. Pharm. Pharmacol. 61, 1365–1374 (2009).
[28] M. Li et al., Can. J. Physiol. Pharmacol. 91, 951–959 (2013).
[29] R. Huang et al., Eur. J. Pharmacol. 814, 151–160 (2017).
[30] A. Ugusman, Z. Zakaria, K. H. Chua, N. A. M. M. Nordin, Z. Abdullah Mahdy, ScientificWorldJournal. 2014, 169370 (2014).
[31] F. Pu et al., J. Pharmacol. Sci. 104, 329–334 (2007).
[32] W. Tongjaroenbuangam et al., Neurochem. Int. 59, 677–685 (2011).
[33] M. I. Azevedo et al., Mol. Pain. 9, 53 (2013).
[34] C. F. L. Gonçalves et al., PLoS One. 8, e73908 (2013).
[35] C. F. L. Gonçalves et al., Thyroid. 28, 265–275 (2018).
[36] Q.-H. Hu, C. Wang, J.-M. Li, D.-M. Zhang, L.-D. Kong, Am. J. Physiol. Renal Physiol. 297, F1080–91 (2009).
[37] K. M. Kamel, O. M. Abd El-Raouf, S. A. Metwally, H. A. Abd El-Latif, M. E. El-sayed, J. Biochem. Mol. Toxicol. 28, 312–319 (2014).
[38] I. T. Abdel-Raheem, Basic Clin. Pharmacol. Toxicol. 107, 742–750 (2010).
[39] S. G. Parkar, T. M. Trower, D. E. Stevenson, Anaerobe. 23, 12–19 (2013).
[40] M. F. Mazzeo et al., PLoS One. 10, e0142376 (2015).