GET 15% OFF WHEN YOU START A RECURRING ORDER! USE CODE "START" IN CHECKOUT. CANCEL ANYTIME!

ROSMARINUS OFFICINALIS LEAF EXTRACT BENEFITS

KEY BENEFITS OF ROSEMARY EXTRACT

        • Supports antioxidant defenses
        • Supports healthy cellular responses
        • Supports brain function
        • Supports cardiovascular function
        • Supports liver function
        • Supports healthy gut microbiota
        • Supports healthy aging
        • Supports exercise performance
        • Supports muscle structure and function
        • Supports healthy metabolic pathways
        • Supports healthy weight
        • Supports mitochondrial biogenesis, structure and function

ABOUT ROSEMARY EXTRACT

Rosemary belongs to the mint family. "Dew of the sea" is the common name of this plant, derived from Latin.
 
The ancient Egyptians, Greeks, and Latins used rosemary as a spice and herb, and it thrived along the coasts, particularly in dry climates throughout the Mediterranean.
 
In addition to its health-promoting polyphenols, Rosmarinus officinalis also contains diterpenes (e.g., carnosol, carnosic acid, rosmarinic acid) and a triterpene called ursolic acid (also known as urson, prunol, malol, or 3-beta-3-hydroxy-urs-12-ene-28-oic acid).
 
Plants produce triterpenes as part of their self-defense mechanism, so they are concentrated around areas that come in contact with the external environment.
 
Ursolic acid was first identified as early as 1920 in the epicuticular waxes of apple peels.
There is some ursolic acid in all apple peels, but the amount varies about fourfold based on variety. Apple varieties Fuji and Smith provide the best sources, with the peel of medium-sized apples containing about 50 mg[1].
 
Other fruits and spices such as basil, rosemary, and thyme also contain ursolic acid. Ulsolic acid has a variety of functions, many of which overlap with those induced by exercise (e.g., antioxidant defense, insulin sensitivity, mitochondrial biogenesis, sirtuin upregulation, AMPK activation).
 
This unique functional support helps develop new muscle fibers and revitalize muscles by mimicking resistance training.  

ROSEMARY EXTRACT FULL BENEFITS

Mitochondrial biogenesis

 

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α)[2]
  • Upregulates PGC-1β[3,4]
  • Upregulates cAMP-PKA-CREB signaling pathway[5]
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM])[2]

 

Mitochondrial structure and function

 

  • Upregulates mitochondrial mass[2]
  • Promotes ATP production[2]
  • Upregulates signaling pathways: AMP-activated protein kinase (AMPK)[2,6–9]
  • Supports complex IV (cytochrome C oxidase) performance[2]
  • Supports mitochondrial β-oxidation – upregulates peroxisome proliferator-activated receptor alpha (PPARα)[10]

 

Exercise performance (ergogenic effects)

 

  • Supports endurance performance[2,11,12]
  • Supports muscle strength[2,11–13]

 

Muscle Structure/Function

 

  • Upregulates muscle mass and the size of skeletal muscle fibers[8,11,12]
  • Promotes the generation of new muscle fibers[14,15]
  • Supports post-exercise recovery and skeletal muscle damage prevention[16]
  • Upregulates muscle cell glucose uptake via AMPK activation[7–9]
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling in skeletal muscle[8,11]
  • Downregulates lactic acid production[12]

 

Metabolism

 

    • Supports healthy insulin sensitivity[10,17–23]
    • Upregulates glucose regulatory enzymes[24]
    • Supports citric acid cycle function via upregulation of citrate synthase[2]
    • Upregulates insulin-like growth factor-1 (IGF-1) in the blood[13]

 

Body weight

 

  • Supports healthy body weight[6,11,18]
  • Promotes lean mass[11,12]
  • Promotes energy expenditure[6]
  • Downregulates fat accumulation and blood/liver lipid levels [6,8,10,11,13,17,19]
  • Promotes free fatty acid uptake and β-oxidation and prevents intracellular fat storage in skeletal muscle cells[6]
  • Upregulates adiponectin concentrations[10]
  • Promotes brown adipose tissue production[11]

 

Antioxidant defenses

 

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx])[25–30]
  • Downregulates reactive oxygen species (ROS) production[2,26]
  • Replenishes glutathione (GSH) levels[17,26]

 

Cellular signaling

 

  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) in the spinal cord; regulates peripheral cytokine signaling[31]
  • Downregulates tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels[17,28]

 

Brain function

 

  • Upregulates longevity biomarkers in the hypothalamus[4]
  • Downregulattes ROS and oxidative stress in the brain[26]
  • Supports spatial learning and memory (in rats)[25,29]
  • Protects from neuronal degeneration[29]
  • Downregulates oxidative stress in the hippocampus[29]
  • Regulates cytokine signaling in the hippocampus[29]

 

Cardiovascular function

 

  • Supports healthy cholesterol levels[10,28]
  • Supports vascular health[32,33]

 

Liver function

 

  • Promotes hepatic autophagy[10]
  • Upregulates xenobiotic detoxification enzymes: NAD(P)H-quinone reductase and glutathione-S-transferase[34,35]
  • Mediates hepatic protection[3]

 

Gut microbiota

 

  • Regulates the composition of the gut microbiota[36]
  • Regulates gut microbial metabolism[36]

 

Healthy aging and longevity

 

  • Upregulates SIRT1 and SIRT6[3,4,33,37,38]
  • Supports "mild" mitochondrial uncoupling: upregulates mitochondrial uncoupling protein 1 (UCP1) and UCP3[2,6,11]
  • Upregulates the expression of Klotho[3,4]
  • Downregulates advanced glycation end-products (AGEs)[17,39,40]
  • Inhibits poly [ADP-ribose] polymerase 1 (PARP1, also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1)[41]

ROSMARINUS OFFICINALIS LEAF EXTRACT CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] Frighetto RTS, et al. Food Chem. 2008;106(2):767-771. doi:10.1016/j.foodchem.2007.06.003
[2] Chen J, et al. Food Funct. 2017;8(7):2425-2436. doi:10.1039/c7fo00127d
[3] Gharibi S,et al. Curr Aging Sci. 2018;11(1):16-23. doi:10.2174/1874609810666170531103140
[4] Bahrami SA, Bakhtiari N. Biomed Pharmacother. 2016;82:8-14. doi:10.1016/j.biopha.2016.04.047
[5] Lewinska A, et al. Apoptosis. 2017;22(6):800-815. doi:10.1007/s10495-017-1353-7
[6] Chu X, et al. Mol Nutr Food Res. 2015;59(8):1491-1503. doi:10.1002/mnfr.201400670
[7] Naimi M, et al. Appl Physiol Nutr Metab. 2015;40(4):407-413. doi:10.1139/apnm-2014-0430
[8] Vlavcheski F, et al. Molecules. 2017;22(10). doi:10.3390/molecules22101669
[9] Naimi M, et al. Clin Exp Pharmacol Physiol. 2017;44(1):94-102. doi:10.1111/1440-1681.12674
[10] Jia Y, et al. Mol Nutr Food Res. 2015;59(2):344-354. doi:10.1002/mnfr.201400399
[11] Kunkel SD, et al. PLoS One. 2012;7(6):e39332. doi:10.1371/journal.pone.0039332
[12] Jeong J-W, et al. J Med Food. 2015;18(12):1380-1386. doi:10.1089/jmf.2014.3401
[13] Bang HS, et al. Korean J Physiol Pharmacol. 2014;18(5):441-446. doi:10.4196/kjpp.2014.18.5.441
[14] Bakhtiari N. JSRB. 2017;3(1):1-5. doi:10.15436/2471-0598.16.015
[15] Bakhtiari N, et al. Med Hypotheses. 2015;85(1):1-6. doi:10.1016/j.mehy.2015.02.014
[16] Bang HS, et al. Korean J Physiol Pharmacol. 2017;21(6):651-656. doi:10.4196/kjpp.2017.21.6.651
[17] Zhao Y, et al. J Agric Food Chem. 2015;63(19):4843-4852. doi:10.1021/acs.jafc.5b01246
[18] Ramírez-Rodríguez AM, et al. J Med Food. 2017;20(9):882-886. doi:10.1089/jmf.2017.0003
[19] Jayaprakasam B, et al. J Agric Food Chem. 2006;54(1):243-248. doi:10.1021/jf0520342
[20] Sundaresan A, et al. J Physiol Biochem. 2016;72(2):345-352. doi:10.1007/s13105-016-0484-6
[21] Zhang W, et al. Biochim Biophys Acta. 2006;1760(10):1505-1512. doi:10.1016/j.bbagen.2006.05.009
[22] Jung SH, et al. Biochem J. 2007;403(2):243-250. doi:10.1042/BJ20061123
[23] Ma P, et al. Am J Transl Res. 2016;8(9):3791-3801. PMID: 27725859.
[24] Jang S-M, et al. Metabolism. 2010;59(4):512-519. doi:10.1016/j.metabol.2009.07.040
[25] Rasoolijazi H, et al. Med J Islam Repub Iran. 2015;29:187. PMID: 26034740.
[26] de Almeida Gonçalves G, et al. Food Funct. 2018;9(4):2328-2340. doi:10.1039/c7fo01928a
[27] Wang H-L, et al. J Food Sci. 2017;82(4):1006-1011. doi:10.1111/1750-3841.13656
[28] Samarghandian S, et al. Cardiovasc Hematol Disord Drug Targets. 2017;17(1):11-17. doi:10.2174/1871529X16666161229154910
[29] Song H, et al. Neurosci Lett. 2016;622:95-101. doi:10.1016/j.neulet.2016.04.048
[30] Nazem F, et al. Can J Diabetes. 2015;39(3):229-234. doi:10.1016/j.jcjd.2014.11.003
[31] Zhang Y, et al. Mol Med Rep. 2016;13(6):5309-5316. doi:10.3892/mmr.2016.5172
[32] Ullevig SL, et al. Atherosclerosis. 2011;219(2):409-416. doi:10.1016/j.atherosclerosis.2011.06.013
[33] Jiang Q, et al. Mol Cell Biochem. 2016;420(1-2):171-184. doi:10.1007/s11010-016-2787-x
[34] Singletary KW. Cancer Lett. 1996;100(1-2):139-144.
[35] Singletary KW, Rokusek JT. Plant Foods Hum Nutr. 1997;50(1):47-53. PMID: 9198114.
[36] Romo-Vaquero M, et al. PLoS One. 2014;9(4):e94687. doi:10.1371/journal.pone.0094687
[37] Bakhtiari N, et al. Arch Biochem Biophys. 2018;650:39-48. doi:10.1016/j.abb.2018.05.012
[38] Gao L, et al. Mol Nutr Food Res. 2016;60(9):1902-1911. doi:10.1002/mnfr.201500878
[39] Ou J, et al. Food Chem. 2017;221:1057-1061. doi:10.1016/j.foodchem.2016.11.056
[40] Wang Z-H, et al. Eur J Pharmacol. 2010;628(1-3):255-260. doi:10.1016/j.ejphar.2009.11.019
[41] Su C, et al. Sci Rep. 2017;7(1):16704. doi:10.1038/s41598-017-16795-3