QUERCETIN BENEFITS

KEY BENEFITS OF QUERCETIN

      • Supports cellular health
      • Supports brain function

      • Supports antioxidant defenses


ABOUT QUERCETIN

Quercetin is a pigment found in yellow plants.
 
Due to its identification in oak trees, its name is derived from the Latin word quercetum, which means oak forest.
 
Quercetin belongs to the flavonol group of polyphenols. Polyphenols play an important role in plants.
 
In addition to its role in protecting plants from pests and UV rays from the sun, it also plays a role in protecting plants against environmental stress. Consequently, they are typically found in parts of the plant that are more exposed to the outside world.
 
The red onion is a good source of quercetin. However, the quercetin in red onions is not evenly distributed; it concentrates in the outer skins (which are typically discarded when onions are peeled before eating) and the root part.
 
Quercetin may be best obtained from capers.

QUERCETIN FULL BENEFITS

Brain function

 

  • Supports learning and memory [2–9]

  • Supports motor activity [5,7,10]

  • Supports non-rapid eye movement (non-REM) sleep [11]

  • Supports brain-derived neurotrophic factor (BDNF) [4,9,12–16]

  • Supports tryptophan hydroxylase (TPH) activity [7]

  • Supports serotonin synthesis/levels [7]

  • Downregulates MAO-A activity [7,17,18]

  • Downregulates acetylcholinesterase (AChE) activity [8,19,20]

  • Supports tyrosine hydroxylase (TH) activity [7]

  • Supports dopamine synthesis [7]

  • Supports noradrenaline synthesis [7]

  • Supports hippocampal SIRT1 levels [7]

  • Supports brain insulin signaling [21]

  • Supports long-term potentiation [22]

  • Supports neural stem/progenitor cell proliferation [9]

  • Supports neurogenesis [9]

  • Supports ectonucleotidase activity [20,23–25]

  • Downregulates adenosine deaminase (ADA) activity [20,24]

  • Supports neuroprotective functions [10,19,20,22,26–30]

  • Supports free radical scavenging [4,5,8,19,20,27,31]

  • Supports brain antioxidant defenses [4–6,8,19,27]

  • Supports Nrf2 signaling [6,28]

  • Supports phase II detox enzymes [6,28]

  • Supports brain mitochondrial function [3,28]

  • Supports neural AMPK signaling [3,26,28]

 

Stress

 

  • Supports healthy behavioral and physiological responses to stress [5,8,12,16,21,30–35]

 

Gut microbiota

 

  • Supports the composition of the gut microbiota [14,36–41]

  • Supports gut microbial metabolism [37]

  • Supports gut-immune communication [36,38]

 

Healthy aging and longevity

 

  • Supports stem cell proliferation [9,42–44]

  • Supports stem cell differentiation [43–45]

  • Attenuates cellular senescence [42,46]

 

Immune system

 

  • Supports adaptive immunity [47]

  • Supports immune system communication [48]

 

Joints and muscle

 

  • Supports joint health [48]

  • Supports muscle recovery and contraction [49]

 

Complementary ingredients

 

  • With palmitoylethanolamide for joint health [50]

  • With glucosamine and chondroitin for joint health [51]

  • With Mangifera indica leaf extract for ergogenic support [52]

QUERCETIN CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] L. Geng, Z. Liu, S. Wang, S. Sun, S. Ma, X. Liu, P. Chan, L. Sun, M. Song, W. Zhang, G.-H. Liu, J. Qu, Protein Cell 10 (2019) 770–775.

[2] A. Priprem, J. Watanatorn, S. Sutthiparinyanont, W. Phachonpai, S. Muchimapura, Nanomedicine 4 (2008) 70–78.

[3] D.-M. Wang, S.-Q. Li, W.-L. Wu, X.-Y. Zhu, Y. Wang, H.-Y. Yuan, Neurochem. Res. 39 (2014) 1533–1543.

[4] S.-F. Xia, Z.-X. Xie, Y. Qiao, L.-R. Li, X.-R. Cheng, X. Tang, Y.-H. Shi, G.-W. Le, Physiol. Behav. 138 (2015) 325–331.

[5] V. Mehta, A. Parashar, M. Udayabanu, Physiol. Behav. 171 (2017) 69–78.

[6] F. Dong, S. Wang, Y. Wang, X. Yang, J. Jiang, D. Wu, X. Qu, H. Fan, R. Yao, Biochem. Biophys. Res. Commun. 491 (2017) 636–641.

[7] F. Sarubbo, M.R. Ramis, C. Kienzer, S. Aparicio, S. Esteban, A. Miralles, D. Moranta, J. Neuroimmune Pharmacol. 13 (2018) 24–38.

[8] N. Samad, A. Saleem, F. Yasmin, M.A. Shehzad, Physiol. Res. 67 (2018) 795–808.

[9] M. Karimipour, R. Rahbarghazi, H. Tayefi, M. Shimia, M. Ghanadian, J. Mahmoudi, H.S. Bagheri, Int. J. Dev. Neurosci. 74 (2019) 18–26.

[10] J. Chakraborty, R. Singh, D. Dutta, A. Naskar, U. Rajamma, K.P. Mohanakumar, CNS Neurosci. Ther. 20 (2014) 10–19.

[11] D. Kambe, M. Kotani, M. Yoshimoto, S. Kaku, S. Chaki, K. Honda, Brain Res. 1330 (2010) 83–88.

[12] Y. Hou, M.A. Aboukhatwa, D.-L. Lei, K. Manaye, I. Khan, Y. Luo, Neuropharmacology 58 (2010) 911–920.

[13] M. Rahvar, A.A. Owji, F.J. Mashayekhi, Bratisl. Lek. Listy 119 (2018) 28–31.

[14] M. Lv, S. Yang, L. Cai, L.-Q. Qin, B.-Y. Li, Z. Wan, Mol. Nutr. Food Res. 62 (2018) e1800621.

[15] K. Selvakumar, S. Bavithra, G. Krishnamoorthy, J. Arunakaran, Interdiscip. Toxicol. 11 (2018) 294–305.

[16] F. Ke, H.-R. Li, X.-X. Chen, X.-R. Gao, L.-L. Huang, A.-Q. Du, C. Jiang, H. Li, J.-F. Ge, Front. Pharmacol. 10 (2019) 1544.

[17] S. Yoshino, A. Hara, H. Sakakibara, K. Kawabata, A. Tokumura, A. Ishisaka, Y. Kawai, J. Terao, Nutrition 27 (2011) 847–852.

[18] L. Saaby, H.B. Rasmussen, A.K. Jäger, J. Ethnopharmacol. 121 (2009) 178–181.

[19] L.A. Pattanashetti, A.D. Taranalli, V. Parvatrao, R.H. Malabade, D. Kumar, Indian J. Pharmacol. 49 (2017) 60–64.

[20] R.M. Maciel, F.B. Carvalho, A.A. Olabiyi, R. Schmatz, J.M. Gutierres, N. Stefanello, D. Zanini, M.M. Rosa, C.M. Andrade, M.A. Rubin, M.R. Schetinger, V.M. Morsch, C.C. Danesi, S.T.A. Lopes, Biomed. Pharmacother. 84 (2016) 559–568.

[21] V. Mehta, A. Parashar, A. Sharma, T.R. Singh, M. Udayabanu, Horm. Behav. 89 (2017) 13–22.

[22] Y. Yao, D.D. Han, T. Zhang, Z. Yang, Phytother. Res. 24 (2010) 136–140.

[23] E. Braganhol, A.S.K. Tamajusuku, A. Bernardi, M.R. Wink, A.M.O. Battastini, Biochim. Biophys. Acta 1770 (2007) 1352–1359.

[24] F.H. Abdalla, A.M. Cardoso, L.B. Pereira, R. Schmatz, J.F. Gonçalves, N. Stefanello, A.M. Fiorenza, J.M. Gutierres, J.D. da S. Serres, D. Zanini, V.C. Pimentel, J.M. Vieira, M.R.C. Schetinger, V.M. Morsch, C.M. Mazzanti, Mol. Cell. Biochem. 381 (2013) 1–8.

[25] J. Baldissarelli, A. Santi, R. Schmatz, F.H. Abdalla, A.M. Cardoso, C.C. Martins, G.R.M. Dias, N.S. Calgaroto, L.P. Pelinson, K.P. Reichert, V.L. Loro, V.M.M. Morsch, M.R.C. Schetinger, Cell. Mol. Neurobiol. 37 (2017) 53–63.

[26] J. Lu, D.-M. Wu, Y.-L. Zheng, B. Hu, Z.-F. Zhang, Q. Shan, Z.-H. Zheng, C.-M. Liu, Y.-J. Wang, J. Pathol. 222 (2010) 199–212.

[27] F.H. Abdalla, R. Schmatz, A.M. Cardoso, F.B. Carvalho, J. Baldissarelli, J.S. de Oliveira, M.M. Rosa, M.A. Gonçalves Nunes, M.A. Rubin, I.B.M. da Cruz, F. Barbisan, V.L. Dressler, L.B. Pereira, M.R.C. Schetinger, V.M. Morsch, J.F. Gonçalves, C.M. Mazzanti, Physiol. Behav. 135 (2014) 152–167.

[28] D. Wang, J. Zhao, S. Li, G. Shen, S. Hu, Nutr. Neurosci. 21 (2018) 123–131.

[29] P.-C. Paula, S.-G. Angelica Maria, C.-H. Luis, C.-G. Gloria Patricia, Molecules 24 (2019).

[30] M. Kosari-Nasab, G. Shokouhi, A. Ghorbanihaghjo, M. Mesgari-Abbasi, A.-A. Salari, Behav. Pharmacol. 30 (2019) 282–289.

[31] S. Merzoug, M.L. Toumi, A. Tahraoui, Naunyn. Schmiedebergs. Arch. Pharmacol. 387 (2014) 921–933.

[32] J.M. Davis, E.A. Murphy, J.L. McClellan, M.D. Carmichael, J.D. Gangemi, Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 (2008) R505–9.

[33] K. Kawabata, Y. Kawai, J. Terao, J. Nutr. Biochem. 21 (2010) 374–380.

[34] V. Kumar, PPIJ 2 (2015).

[35] P. Anggreini, C. Ardianto, M. Rahmadi, J. Khotib, J. Basic Clin. Physiol. Pharmacol. 30 (2019).

[36] R. Lin, M. Piao, Y. Song, Front. Microbiol. 10 (2019) 1092.

[37] D.-N. Wu, L. Guan, Y.-X. Jiang, S.-H. Ma, Y.-N. Sun, H.-T. Lei, W.-F. Yang, Q.-F. Wang, Cardiovasc Diagn Ther 9 (2019) 545–560.

[38] D. Porras, E. Nistal, S. Martínez-Flórez, S. Pisonero-Vaquero, J.L. Olcoz, R. Jover, J. González-Gallego, M.V. García-Mediavilla, S. Sánchez-Campos, Free Radic. Biol. Med. 102 (2017) 188–202.

[39] J. Nie, L. Zhang, G. Zhao, X. Du, J. Appl. Microbiol. 127 (2019) 1824–1834.

[40] U. Etxeberria, N. Arias, N. Boqué, M.T. Macarulla, M.P. Portillo, J.A. Martínez, F.I. Milagro, J. Nutr. Biochem. 26 (2015) 651–660.

[41] J. Firrman, L. Liu, L. Zhang, G. Arango Argoty, M. Wang, P. Tomasula, M. Kobori, S. Pontious, W. Xiao, Anaerobe 42 (2016) 130–141.

[42] L. Geng, Z. Liu, W. Zhang, W. Li, Z. Wu, W. Wang, R. Ren, Y. Su, P. Wang, L. Sun, Z. Ju, P. Chan, M. Song, J. Qu, G.-H. Liu, Protein Cell 10 (2019) 417–435.

[43] Z. Yuan, J. Min, Y. Zhao, Q. Cheng, K. Wang, S. Lin, J. Luo, H. Liu, Am. J. Transl. Res. 10 (2018) 4313–4321.

[44] X.-G. Pang, Y. Cong, N.-R. Bao, Y.-G. Li, J.-N. Zhao, Biomed Res. Int. 2018 (2018) 4178021.

[45] A. Casado-Díaz, J. Anter, G. Dorado, J.M. Quesada-Gómez, J. Nutr. Biochem. 32 (2016) 151–162.

[46] S.R. Kim, K. Jiang, M. Ogrodnik, X. Chen, X.-Y. Zhu, H. Lohmeier, L. Ahmed, H. Tang, T. Tchkonia, L.J. Hickson, J.L. Kirkland, L.O. Lerman, Transl. Res. 213 (2019) 112–123.

[47] J. Mlcek, T. Jurikova, S. Skrovankova, J. Sochor, Molecules 21 (2016).

[48] F. Javadi, A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A.R. Foroushani, S. Jazayeri, Journal of the American College of Nutrition 36 (2017) 9–15.

[49] I. Bazzucchi, F. Patrizio, R. Ceci, G. Duranti, P. Sgrò, S. Sabatini, L. Di Luigi, M. Sacchetti, F. Felici, Nutrients 11 (2019).

[50] D. Britti, R. Crupi, D. Impellizzeri, E. Gugliandolo, R. Fusco, C. Schievano, V.M. Morittu, M. Evangelista, R. Di Paola, S. Cuzzocrea, BMC Veterinary Research 13 (2017).

[51] N. Kanzaki, K. Saito, A. Maeda, Y. Kitagawa, Y. Kiso, K. Watanabe, A. Tomonaga, I. Nagaoka, H. Yamaguchi, Journal of the Science of Food and Agriculture 92 (2012) 862–869.

[52] M. Gelabert-Rebato, J.C. Wiebe, M. Martin-Rincon, N. Gericke, M. Perez-Valera, D. Curtelin, V. Galvan-Alvarez, L. Lopez-Rios, D. Morales-Alamo, J.A.L. Calbet, Front. Physiol. 9 (2018) 740.