• Supports mood
      • Supports healthy aging
      • Supports general immune health
      • Supports cognitive function


Herbalists in Japanese and Chinese cultures have extensively used Polygonum cuspidatum (commonly referred to as Japanese Knotweed).
Roots of this plant are a good source of resveratrol, which has led to the production of resveratrol extracts standardized from this plant.
The use of resveratrol (trans-3, 5, 4'-trihydroxystilbene) has been tested in thousands of preclinical and clinical studies.
The most notable properties of this extract are that it mimics calorie restriction (e.g., supports healthy aging), as well as supports metabolism, immunity, and cognition.
In response to environmental stress, plants produce more resveratrol. As a result, they become more resistant to stress.
Animals and humans have both been shown to be able to cope with stress when consuming resveratrol in low amounts.*  


Brain function


  • Supports cerebral blood flow[1–4]
  • Supports neural stem cell functions[5,6]
  • Supports neurogenesis[5–7]
  • Supports brain-derived neurotrophic factor (BDNF)[7–18]
  • Supports HPA axis signaling[13,18]
  • Supports neuroprotective functions[10,18–21]
  • Supports executive function[2,22]
  • Supports learning and memory (animals)[14,15,17,23]
  • Supports neuroimmune signaling[24]


Cardiovascular function


  • Supports healthy vascular function[25–28]
  • Supports cardiac function[29]


Exercise performance


  • Supports endurance performance[30]
  • Supports muscle structure and function[31,32]
  • Supports glucose uptake in muscles[29]


Metabolic Function


  • Supports healthy insulin sensitivity[27,30,33–37]
  • Supports healthy lipid levels 30,33,38]
  • Supports thermogenesis[30]
  • Supports adiponectin levels[38]


Immune function


  • Supports innate immunity[39–52]
  • Supports adaptive immunity[46,53–58]
  • Supports cellular intrinsic immune defenses[59–68]
  • Supports mucosal immunity[69–71]
  • Supports immune tolerance[46,54–58,72–78]
  • Supports immune signaling[54,79–86]
  • Supports healthy natural killer cell function[45,48–51,87–90]
  • Supports healthy neutrophil function[45,52,71,91–95]
  • Supports healthy macrophage function[46,47,96,97]
  • Supports healthy microglial function[98–108]
  • Supports healthy mast cell function[39–44]
  • Supports gamma delta T cell function[54]
  • Supports healthy T cell function[46,54–58]
  • Supports healthy B cell function[109]  


Mitochondrial structure and function


  • Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)[30,31,33–35,38,110,111]
  • Supports nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM])[30,31,111,112]
  • Supports mitochondrial size and number[30,34]
  • Supports inner mitochondrial membrane folding (cristae)[30]
  • Supports mitochondrial DNA (mtDNA)[30,31,35]
  • Supports mitochondrial membrane potential[31]
  • Supports citrate synthase[30,33]
  • Supports ATP production[31,111]
  • Supports NAD+ pool[31,35,113]
  • Supports components of the electron transport chain - complex I-V[31]
  • Supports β-oxidation[30,38,113,114]


Signaling pathways


  • Supports AMPK signaling[31,33–36,38,111,113,115]
  • Supports liver kinase B1 (LKB1) signaling[31,111]
  • Supports peroxisome proliferator-activated receptor alpha (PPARα)[30]
  • Supports peroxisome proliferator-activated receptor gamma (PPARγ)[38]
  • Supports estrogen-related receptor alpha (ERRα)[30,35]
  • Supports forkhead transcription factor O 1 (FOXO1)[38]
  • Downregulates phosphodiesterase (PDE) 1 and 4 and supports adenylate cyclase/cAMP levels[113,116]


Antioxidant defenses


  • Supports antioxidant activity[21,35,37,38,112,113,117,118]
  • Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx])[25,26]
  • Downregulates pro-oxidant enzymes (NADPH oxidase)[25,26]
  • Supports Nrf2[119–129]


Gut microbiota


  • Supports healthy gut microbiota[98,130–149]


Healthy aging and longevity


  • Supports stem cells[150–162]
  • Supports telomerase activity[150–152,163,164]
  • Supports anti-senescence functions[151,152,157,164]
  • Activates SIRT1[31,33,38,110,112,115,165,166]
  • Supports mitochondrial uncoupling proteins UCP1, UCP2, and UCP3[30,35]
  • Supports Klotho[112,166]
  • Supports mTOR signaling[34]
  • Delays age-related physiological changes[29]
  • Extends healthspan (mice on a high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae)[28,34,165,167,168]


Circadian rhythms


  • Supports circadian rhythms[169–172]
  • Supports clock gene expression[169,172]


Complementary ingredients


  • Apigenin - resveratrol is an apigenin bioenhancer[173]
  • Piperine as a bioenhance[73,174–177] and for cognitive function[178]
  • Hawthorn for heart function support[179]
  • Inositol for metabolic health[180]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1] D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.
[2] R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).
[3] E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.
[4] H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).
[5] L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.
[6] N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.
[7] S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.
[8] M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).
[9] M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.
[10] L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.
[11] G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.
[12] X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.
[13] S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.
[14] J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.
[15] Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.
[16] J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.
[17] J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.
[18] C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.
[19] G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).
[20] Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.
[21] R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.
[22] S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.
[23] Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.
[24] C. Moussa, M. Hebron, X. Huang, J. Ahn, R.A. Rissman, P.S. Aisen, R.S. Turner, J. Neuroinflammation 14 (2017) 1.
[25] G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, J. Physiol. Pharmacol. 60 Suppl 4 (2009) 111–116.
[26] N. Xia, A. Daiber, A. Habermeier, E.I. Closs, T. Thum, G. Spanier, Q. Lu, M. Oelze, M. Torzewski, K.J. Lackner, T. Münzel, U. Förstermann, H. Li, J. Pharmacol. Exp. Ther. 335 (2010) 149–154.
[27] J.P. Crandall, V. Oram, G. Trandafirescu, M. Reid, P. Kishore, M. Hawkins, H.W. Cohen, N. Barzilai, J. Gerontol. A Biol. Sci. Med. Sci. 67 (2012) 1307–1312.
[28] K.J. Pearson, J.A. Baur, K.N. Lewis, L. Peshkin, N.L. Price, N. Labinskyy, W.R. Swindell, D. Kamara, R.K. Minor, E. Perez, H.A. Jamieson, Y. Zhang, S.R. Dunn, K. Sharma, N. Pleshko, L.A. Woollett, A. Csiszar, Y. Ikeno, D. Le Couteur, P.J. Elliott, K.G. Becker, P. Navas, D.K. Ingram, N.S. Wolf, Z. Ungvari, D.A. Sinclair, R. de Cabo, Cell Metab. 8 (2008) 157–168.
[29] J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3 (2008) e2264.
[30] M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.
[31] N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.
[32] J.-P.K. Hyatt, L. Nguyen, A.E. Hall, A.M. Huber, J.C. Kocan, J.A. Mattison, R. de Cabo, J.R. LaRocque, R.J. Talmadge, Front. Physiol. 7 (2016) 77.
[33] S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.
[34] J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.
[35] J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.
[36] C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.
[37] P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.
[38] J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.
[39] J. Li, B. Wang, Y. Luo, Q. Zhang, Y. Bian, R. Wang, Mol. Immunol. 122 (2020) 156–162.
[40] Y.-F. Zhang, Q.-M. Liu, Y.-Y. Gao, B. Liu, H. Liu, M.-J. Cao, X.-W. Yang, G.-M. Liu, Food Funct. 10 (2019) 2030–2039.
[41] S.-Y. Han, J.-Y. Bae, S.-H. Park, Y.-H. Kim, J.H.Y. Park, Y.-H. Kang, J. Nutr. 143 (2013) 632–639.
[42] D.M. André, M.C. Calixto, C. Sollon, E.C. Alexandre, L.O. Leiria, N. Tobar, G.F. Anhê, E. Antunes, Int. Immunopharmacol. 38 (2016) 298–305.
[43] K. Bozdemir, E. Şahin, N. Altintoprak, N.B. Muluk, B.P. Cengiz, M. Acar, C. Cingi, Clin. Invest. Med. 39 (2016) E63–72.
[44] J. Chen, H. Zhou, J. Wang, B. Zhang, F. Liu, J. Huang, J. Li, J. Lin, J. Bai, R. Liu, Int. Immunopharmacol. 25 (2015) 43–48.
[45] Y. Nakagami, S. Suzuki, J.L. Espinoza, L. Vu Quang, M. Enomoto, S. Takasugi, A. Nakamura, T. Nakayama, H. Tani, I. Hanamura, A. Takami, Nutrients 11 (2019).
[46] M. Shabani, A. Sadeghi, H. Hosseini, M. Teimouri, R. Babaei Khorzoughi, P. Pasalar, R. Meshkani, Sci. Rep. 10 (2020) 3791.
[47] S. Liu, Y. Du, K. Shi, Y. Yang, Z. Yang, Am. J. Transl. Res. 11 (2019) 5212–5226.
[48] C. Leischner, M. Burkard, M.M. Pfeiffer, U.M. Lauer, C. Busch, S. Venturelli, Nutr. J. 15 (2016) 47.
[49] Q. Li, T. Huyan, L.-J. Ye, J. Li, J.-L. Shi, Q.-S. Huang, J. Agric. Food Chem. 62 (2014) 10928–10935.
[50] T. Li, G.-X. Fan, W. Wang, T. Li, Y.-K. Yuan, Int. Immunopharmacol. 7 (2007) 1221–1231.
[51] R. Falchetti, M.P. Fuggetta, G. Lanzilli, M. Tricarico, G. Ravagnan, Life Sci. 70 (2001) 81–96.
[52] T.-H. Huang, C.-C. Chen, H.-M. Liu, T.-Y. Lee, S.-H. Shieh, Sci. Rep. 7 (2017) 2705.
[53] C. Zhang, Y. Tian, F. Yan, X. Kang, R. Han, G. Sun, H. Zhang, Am. J. Vet. Res. 75 (2014) 752–759.
[54] J.L. Espinoza, L.Q. Trung, P.T. Inaoka, K. Yamada, D.T. An, S. Mizuno, S. Nakao, A. Takami, Oxid. Med. Cell. Longev. 2017 (2017) 6781872.
[55] N.-H. Guo, X. Fu, F.-M. Zi, Y. Song, S. Wang, J. Cheng, Int. Immunopharmacol. 73 (2019) 181–192.
[56] B.B.-C. Weng, W.-S. Lin, J.-C. Chang, R.Y.-Y. Chiou, Int. J. Mol. Med. 38 (2016) 1895–1904.
[57] H. Yang, A. Zhang, Y. Zhang, S. Ma, C. Wang, J. Stroke Cerebrovasc. Dis. 25 (2016) 1914–1921.
[58] J. Yao, C. Wei, J.-Y. Wang, R. Zhang, Y.-X. Li, L.-S. Wang, World J. Gastroenterol. 21 (2015) 6572–6581.
[59] A. Paemanee, A. Hitakarun, S. Roytrakul, D.R. Smith, BMC Res. Notes 11 (2018) 307.
[60] N. Zainal, C.-P. Chang, Y.-L. Cheng, Y.-W. Wu, R. Anderson, S.-W. Wan, C.-L. Chen, T.-S. Ho, S. AbuBakar, Y.-S. Lin, Sci. Rep. 7 (2017) 42998.
[61] A. Mohd, N. Zainal, K.-K. Tan, S. AbuBakar, Sci. Rep. 9 (2019) 14336.
[62] S.-C. Lin, C.-T. Ho, W.-H. Chuo, S. Li, T.T. Wang, C.-C. Lin, BMC Infect. Dis. 17 (2017) 144.
[63] P. Mastromarino, D. Capobianco, F. Cannata, C. Nardis, E. Mattia, A. De Leo, R. Restignoli, A. Francioso, L. Mosca, Antiviral Res. 123 (2015) 15–21.
[64] C.-J. Lin, H.-J. Lin, T.-H. Chen, Y.-A. Hsu, C.-S. Liu, G.-Y. Hwang, L. Wan, PLoS One 10 (2015) e0117602.
[65] C.L. Clouser, J. Chauhan, M.A. Bess, J.L. van Oploo, D. Zhou, S. Dimick-Gray, L.M. Mansky, S.E. Patterson, Bioorg. Med. Chem. Lett. 22 (2012) 6642–6646.
[66] J.L. Espinoza, A. Takami, L.Q. Trung, S. Kato, S. Nakao, PLoS One 7 (2012) e51306.
[67] J.J. Docherty, M.M. Fu, J.M. Hah, T.J. Sweet, S.A. Faith, T. Booth, Antiviral Res. 67 (2005) 155–162.
[68] J.J. Docherty, M.M. Fu, B.S. Stiffler, R.J. Limperos, C.M. Pokabla, A.L. DeLucia, Antiviral Res. 43 (1999) 145–155.
[69] Z. Gan, W. Wei, Y. Li, J. Wu, Y. Zhao, L. Zhang, T. Wang, X. Zhong, Molecules 24 (2019).
[70] J. Al Azzaz, A. Rieu, V. Aires, D. Delmas, J. Chluba, P. Winckler, M.-A. Bringer, J. Lamarche, D. Vervandier-Fasseur, F. Dalle, P. Lapaquette, J. Guzzo, Front. Immunol. 9 (2018) 3149.
[71] Y. Mayangsari, T. Suzuki, J. Agric. Food Chem. 66 (2018) 12666–12674.
[72] A.L. de B. Oliveira, V.V.S. Monteiro, K.C. Navegantes-Lima, J.F. Reis, R. de S. Gomes, D.V.S. Rodrigues, S.L. de F. Gaspar, M.C. Monteiro, Nutrients 9 (2017).
[73] N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.
[74] K.A.O. Gandy, J. Zhang, P. Nagarkatti, M. Nagarkatti, J. Neuroimmune Pharmacol. 14 (2019) 462–477.
[75] Z.-L. Wang, X.-F. Luo, M.-T. Li, D. Xu, S. Zhou, H.-Z. Chen, N. Gao, Z. Chen, L.-L. Zhang, X.-F. Zeng, PLoS One 9 (2014) e114792.
[76] Z. Fonseca-Kelly, M. Nassrallah, J. Uribe, R.S. Khan, K. Dine, M. Dutt, K.S. Shindler, Front. Neurol. 3 (2012) 84.
[77] K.S. Shindler, E. Ventura, M. Dutt, P. Elliott, D.C. Fitzgerald, A. Rostami, J. Neuroophthalmol. 30 (2010) 328–339.
[78] Z. Wenbin, G. Guojun, West Indian Med. J. 63 (2014) 20–25.
[79] H. Ghanim, C.L. Sia, S. Abuaysheh, K. Korzeniewski, P. Patnaik, A. Marumganti, A. Chaudhuri, P. Dandona, J. Clin. Endocrinol. Metab. 95 (2010) E1–8.
[80] J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M.J. Yáñez-Gascón, F.J. García-Almagro, J.A. Ruiz-Ros, M.T. García-Conesa, F.A. Tomás-Barberán, J.C. Espín, Am. J. Cardiol. 110 (2012) 356–363.
[81] R.C.S. Macedo, A. Vieira, D.P. Marin, R. Otton, Chem. Biol. Interact. 227 (2015) 89–95.
[82] H.S. Zahedi, S. Jazayeri, R. Ghiasvand, M. Djalali, M.R. Eshraghian, Int. J. Prev. Med. 4 (2013) S1–4.
[83] E. Jo, R. Bartosh, A.T. Auslander, D. Directo, A. Osmond, M.W. Wong, Sports (Basel) 7 (2019).
[84] S. Bo, V. Ponzo, G. Ciccone, A. Evangelista, F. Saba, I. Goitre, M. Procopio, G.F. Pagano, M. Cassader, R. Gambino, Pharmacol. Res. 111 (2016) 896–905.
[85] A.Z. Javid, R. Hormoznejad, H.A. Yousefimanesh, M.H. Haghighi-Zadeh, M. Zakerkish, Diabetes Metab. Syndr. 13 (2019) 2769–2774.
[86] S. Bo, G. Ciccone, A. Castiglione, R. Gambino, F. De Michieli, P. Villois, M. Durazzo, P. Cavallo-Perin, M. Cassader, Curr. Med. Chem. 20 (2013) 1323–1331.
[87] C.-C. Lu, J.-K. Chen, J. Cell. Physiol. 223 (2010) 343–351.
[88] Y. Fang, E.J. Herrick, M.B. Nicholl, J. Androl. 33 (2012) 752–760.
[89] J. Luis Espinoza, A. Takami, L.Q. Trung, S. Nakao, Cancer Sci. 104 (2013) 657–662.
[90] J. Pan, J. Shen, W. Si, C. Du, D. Chen, L. Xu, M. Yao, P. Fu, W. Fan, Oncotarget 8 (2017) 65743–65758.
[91] A.Y. Göçmen, D. Burgucu, I. Karadoğan, A. Timurağaoğlu, S. Gümüşlü, Exp. Clin. Cardiol. 18 (2013) e111–4.
[92] J.E. Vargas, A.A. Souto, P.M.C. Pitrez, R.T. Stein, B.N. Porto, Med. Hypotheses 96 (2016) 61–65.
[93] L. Jiang, L. Zhang, K. Kang, D. Fei, R. Gong, Y. Cao, S. Pan, M. Zhao, M. Zhao, Biomed. Pharmacother. 84 (2016) 130–138.
[94] Y.-F. Tsai, C.-Y. Chen, W.-Y. Chang, Y.-T. Syu, T.-L. Hwang, Free Radic. Biol. Med. 145 (2019) 67–77.
[95] S. Rotondo, G. Rajtar, S. Manarini, A. Celardo, D. Rotillo, G. de Gaetano, V. Evangelista, C. Cerletti, Br. J. Pharmacol. 123 (1998) 1691–1699.
[96] M. Chen, X. Chen, X. Song, A. Muhammad, R. Jia, Y. Zou, L. Yin, L. Li, C. He, G. Ye, C. Lv, W. Zhang, Z. Yin, Int. Immunopharmacol. 76 (2019) 105876.
[97] C.-C. Lu, H.-C. Lai, S.-C. Hsieh, J.-K. Chen, J. Leukoc. Biol. 83 (2008) 1028–1037.
[98] Y. Ma, S. Liu, H. Shu, J. Crawford, Y. Xing, F. Tao, Brain Behav. Immun. 87 (2020) 455–464.
[99] S. Ma, L. Fan, J. Li, B. Zhang, Z. Yan, Int. J. Neurosci. 130 (2020) 817–825.
[100] L. Feng, L. Zhang, DNA Cell Biol. 38 (2019) 874–879.
[101] J. Yan, A. Luo, J. Gao, X. Tang, Y. Zhao, B. Zhou, Z. Zhou, S. Li, Am. J. Transl. Res. 11 (2019) 1555–1568.
[102] B. Qi, C. Shi, J. Meng, S. Xu, J. Liu, Int. J. Biochem. Cell Biol. 103 (2018) 56–64.
[103] J. Wiedemann, K. Rashid, T. Langmann, Biochem. Biophys. Res. Commun. 501 (2018) 239–245.
[104] X. Zhang, Q. Wu, Q. Zhang, Y. Lu, J. Liu, W. Li, S. Lv, M. Zhou, X. Zhang, C. Hang, Front. Neurosci. 11 (2017) 611.
[105] L.-L. Wang, D.-L. Shi, H.-Y. Gu, M.-Z. Zheng, J. Hu, X.-H. Song, Y.-L. Shen, Y.-Y. Chen, Mol. Med. Rep. 13 (2016) 4051–4057.
[106] L. Tao, Q. Ding, C. Gao, X. Sun, Int. Immunopharmacol. 34 (2016) 165–172.
[107] M. Kodali, V.K. Parihar, B. Hattiangady, V. Mishra, B. Shuai, A.K. Shetty, Sci. Rep. 5 (2015) 8075.
[108] J. Abraham, R.W. Johnson, Rejuvenation Res. 12 (2009) 445–453.
[109] J. Yuan, L. Lu, Z. Zhang, S. Zhang, Rejuvenation Res. 15 (2012) 507–515.
[110] T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.
[111] B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.
[112] P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.
[113] S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.
[114] J. Most, S. Timmers, I. Warnke, J.W. Jocken, M. van Boekschoten, P. de Groot, I. Bendik, P. Schrauwen, G.H. Goossens, E.E. Blaak, Am. J. Clin. Nutr. 104 (2016) 215–227.
[115] K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.
[116] A.M. El-Mowafy, M. Alkhalaf, Carcinogenesis 24 (2003) 869–873.
[117] Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.
[118] S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.
[119] T. Farkhondeh, S.L. Folgado, A.M. Pourbagher-Shahri, M. Ashrafizadeh, S. Samarghandian, Biomed. Pharmacother. 127 (2020) 110234.
[120] X. Wang, H. Fang, G. Xu, Y. Yang, R. Xu, Q. Liu, X. Xue, J. Liu, H. Wang, Diabetes Metab. Syndr. Obes. 13 (2020) 1061–1075.
[121] M. Sami-Ur-Rasheed, M.K. Tripathi, D.K. Patel, M.P. Singh, Protein Pept. Lett. (2020).
[122] Z.-M. Sun, P. Guan, L.-F. Luo, L.-Y. Qin, N. Wang, Y.-S. Zhao, E.-S. Ji, Life Sci. 245 (2020) 117362.
[123] H. Hosseini, M. Teimouri, M. Shabani, M. Koushki, R. Babaei Khorzoughi, F. Namvarjah, P. Izadi, R. Meshkani, Int. J. Biochem. Cell Biol. 119 (2020) 105667.
[124] N. Lian, S. Zhang, J. Huang, T. Lin, Q. Lin, Lung 198 (2020) 323–331.
[125] G. Wang, X. Xie, L. Yuan, J. Qiu, W. Duan, B. Xu, X. Chen, Biofactors 46 (2020) 441–453.
[126] G. Xu, X. Zhao, J. Fu, X. Wang, Ann. Palliat. Med. 8 (2019) 565–575.
[127] S. Seyyedebrahimi, H. Khodabandehloo, E. Nasli Esfahani, R. Meshkani, Acta Diabetol. 55 (2018) 341–353.
[128] A.A. Javkhedkar, Y. Quiroz, B. Rodriguez-Iturbe, N.D. Vaziri, M.F. Lokhandwala, A.A. Banday, Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 (2015) R840–6.
[129] B. Wang, J. Sun, L. Li, J. Zheng, Y. Shi, G. Le, Food Funct. 5 (2014) 1452–1463.
[130] Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.
[131] Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.
[132] L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.
[133] J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.
[134] A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).
[135] M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.
[136] M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.
[137] J.M. Walker, P. Eckardt, J.O. Aleman, J.C. da Rosa, Y. Liang, T. Iizumi, S. Etheve, M.J. Blaser, J. L Breslow, P.R. Holt, Transl. Res. 4 (2019) 122–135.
[138] P. Wang, J. Wang, D. Li, W. Ke, F. Chen, X. Hu, J. Nutr. Biochem. 81 (2020) 108363.
[139] H.R. Alrafas, P.B. Busbee, K.N. Chitrala, M. Nagarkatti, P. Nagarkatti, J. Clin. Med. Res. 9 (2020).
[140] K. Chen, H. Zhao, L. Shu, H. Xing, C. Wang, C. Lu, G. Song, Int. J. Food Sci. Nutr. (2020) 1–14.
[141] P. Wang, J. Gao, W. Ke, J. Wang, D. Li, R. Liu, Y. Jia, X. Wang, X. Chen, F. Chen, X. Hu, Free Radic. Biol. Med. 156 (2020) 83–98.
[142] S. Hui, Y. Liu, L. Huang, L. Zheng, M. Zhou, H. Lang, X. Wang, L. Yi, M. Mi, Int. J. Obes. 44 (2020) 1678–1690.
[143] F. Li, Y. Han, X. Cai, M. Gu, J. Sun, C. Qi, T. Goulette, M. Song, Z. Li, H. Xiao, Food Funct. 11 (2020) 1063–1073.
[144] N. Sreng, S. Champion, J.-C. Martin, S. Khelaifia, J.E. Christensen, R. Padmanabhan, V. Azalbert, V. Blasco-Baque, P. Loubieres, L. Pechere, J.-F. Landrier, R. Burcelin, E. Sérée, J. Nutr. Biochem. 72 (2019) 108218.
[145] H.R. Alrafas, P.B. Busbee, M. Nagarkatti, P.S. Nagarkatti, J. Leukoc. Biol. 106 (2019) 467–480.
[146] J.D. Jaimes, V. Jarosova, O. Vesely, C. Mekadim, J. Mrazek, P. Marsik, J. Killer, K. Smejkal, P. Kloucek, J. Havlik, Molecules 24 (2019).
[147] P. Wang, D. Li, W. Ke, D. Liang, X. Hu, F. Chen, Int. J. Obes. 44 (2020) 213–225.
[148] C.L. Campbell, R. Yu, F. Li, Q. Zhou, D. Chen, C. Qi, Y. Yin, J. Sun, Diabetes Metab. Syndr. Obes. 12 (2019) 97–107.
[149] W. Liao, X. Yin, Q. Li, H. Zhang, Z. Liu, X. Zheng, L. Zheng, X. Feng, Molecules 23 (2018).
[150] V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.
[151] L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.
[152] X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.
[153] M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.
[154] L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.
[155] X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.
[156] H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.
[157] Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.
[158] H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.
[159] I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.
[160] Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.
[161] T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.
[162] Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.
[163] F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.
[164] J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.
[165] K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.
[166] S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.
[167] T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128 (2007) 546–552.
[168] J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686–689.
[169] J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.
[170] F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.
[171] J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.
[172] L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.
[173] J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.
[174] J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.
[175] K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.
[176] W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.
[177] Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.
[178] E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.
[179] Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.
[180] A. Malvasi, I. Kosmas, O.A. Mynbaev, R. Sparic, S. Gustapane, M. Guido, A. Tinelli, Clin. Ter. 168 (2017) e240–e247.