PALMITOYLETHANOLAMIDE BENEFITS

KEY BENEFITS OF PALMITOYLETHANOLAMIDE

      • Supports balanced mood
      • Supports joint and muscle function and comfort
      • Supports healthy sensory nerve signaling
      • Supports upper respiratory tract health
      • Supports general immune health

ABOUT PALMITOYLETHANOLAMIDE

The endogenous fatty acid amide (FAA) palmitoylethanolamide stands for is an endogenous fatty acid amide (PEA).

 

FAA is a signaling molecule found throughout the body, and like its endogenous counterpart, is critical to cell communication.

 

Cells produce more palmitoylethanolamide when stressed or when they need to heal more. Peroxisome proliferator-activated receptor alpha (PPAR-α) and endocannabinoid receptors are primarily responsible for its biological effects[1,2].

 

In sensory nerves, as well as supporting microglia (the brain's immune cells) and mast cells, palmitoylethanolamide plays a key role in regulating the immune system.

 

During the 1960s and 1970s, palmitoylethanolamide was studied for its ability to promote general immune health. In recent years, palmitoylethanolamide has attracted a lot of attention for its effects on sensory nerve health, mood support, joint comfort, and muscle recovery.

 

In addition to supporting the gut-immune axis, palmitoylethanolamide also enhances the growth of intestinal microbiota.


PALMITOYLETHANOLAMIDE FULL BENEFITS

Immunity

 

  • Supports general immune health[3–6]  

  • Supports innate immunity[7–10]
  • Supports adaptive immunity[11]
  • Supports immune tolerance[12–15]
  • Supports immune signaling[3,8,11,12]
  • Supports healthy microglia function[4,16–18]
  • Supports healthy macrophage function[7,8,10]
  • Supports healthy T cell function[11]
  • Supports healthy mast cell function[9,18–21]

 

Gastrointestinal function

 

  • Supports GI immune signaling[22–24]
  • Supports gut barrier function[25,26]
  • Supports gut microbiota[27,28]

 

Brain and nerve function

 

  • Supports brain function[29,30]
  • Supports neuroimmune signaling[12,18,32–34]
  • Supports sensory nervous system health[29,35,36]
  • Supports a positive mental-emotional bias[37]
  • Supports healthy behavioral and cognitive responses to stress[12,38–40]
  • Supports neuroprotection[32–34,41–43]
  • Supports neural antioxidant defenses[33]
  • Supports endogenous cannabinoid (i.e., endocannabinoid) signaling[12,38,39,44]
  • Supports TRPV1 signaling

 

Muscle and joint function

 

  • Supports joint & muscle health, comfort, and flexibility[45,46]
  • Supports exercise recovery and performance[47]

 

Complementary ingredients

 

  • Luteolin for brain, nerve, and microglia function[13,48–51]

PALMITOYLETHANOLAMIDE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] J. Lo Verme, J. Fu, G. Astarita, G. La Rana, R. Russo, A. Calignano, D. Piomelli, Mol. Pharmacol. 67 (2005) 15–19.
[2] E. Ryberg, N. Larsson, S. Sjögren, S. Hjorth, N.-O. Hermansson, J. Leonova, T. Elebring, K. Nilsson, T. Drmota, P.J. Greasley, Br. J. Pharmacol. 152 (2007) 1092–1101.
[3] J.M. Keppel Hesselink, T. de Boer, R.F. Witkamp, Int. J. Inflam. 2013 (2013) 151028.
[4] E.C. Heide, L. Bindila, J.M. Post, D. Malzahn, B. Lutz, J. Seele, R. Nau, S. Ribes, Front. Immunol. 9 (2018) 2671.
[5] K. Masek, F. Perlík, J. Klíma, R. Kahlich, Eur. J. Clin. Pharmacol. 7 (1974) 415–419.
[6] R. Kahlich, J. Klíma, F. Cihla, V. Franková, K. Masek, M. Rosický, F. Matousek, J. Bruthans, J. Hyg. Epidemiol. Microbiol. Immunol. 23 (1979) 11–24.
[7] P. Rinne, R. Guillamat-Prats, M. Rami, L. Bindila, L. Ring, L.-P. Lyytikäinen, E. Raitoharju, N. Oksala, T. Lehtimäki, C. Weber, E.P.C. van der Vorst, S. Steffens, Arterioscler. Thromb. Vasc. Biol. 38 (2018) 2562–2575.
[8] V. Lackovic, L. Borecký, J. Kresáková, Arch. Immunol. Ther. Exp. 25 (1977) 655–661.
[9] S. Mazzari, R. Canella, L. Petrelli, G. Marcolongo, A. Leon, Eur. J. Pharmacol. 300 (1996) 227–236.
[10] S. Redlich, S. Ribes, S. Schütze, R. Nau, J. Neuroinflammation 11 (2014) 108.
[11] V. Chiurchiù, A. Leuti, R. Smoum, R. Mechoulam, M. Maccarrone, FASEB J. 32 (2018) 5716–5723.
[12] N.S. Orefice, M. Alhouayek, A. Carotenuto, S. Montella, F. Barbato, A. Comelli, A. Calignano, G.G. Muccioli, G. Orefice, Neurotherapeutics 13 (2016) 428–438.
[13] G. Contarini, D. Franceschini, L. Facci, M. Barbierato, P. Giusti, M. Zusso, Journal of Neuroinflammation 16 (2019).
[14] A. Rahimi, M. Faizi, F. Talebi, F. Noorbakhsh, F. Kahrizi, N. Naderi, Neuroscience 290 (2015) 279–287.
[15] F. Loría, S. Petrosino, L. Mestre, A. Spagnolo, F. Correa, M. Hernangómez, C. Guaza, V. Di Marzo, F. Docagne, Eur. J. Neurosci. 28 (2008) 633–641.
[16] F. Guida, L. Luongo, S. Boccella, M.E. Giordano, R. Romano, G. Bellini, I. Manzo, A. Furiano, A. Rizzo, R. Imperatore, F.A. Iannotti, E. D’Aniello, F. Piscitelli, F. Sca Rossi, L. Cristino, V. Di Marzo, V. de Novellis, S. Maione, Sci. Rep. 7 (2017) 375.
[17] R. Nau, S. Ribes, M. Djukic, H. Eiffert, Front. Cell. Neurosci. 8 (2014) 138.
[18] S.D. Skaper, L. Facci, P. Giusti, Mol. Neurobiol. 48 (2013) 340–352.
[19] L. Facci, R. Dal Toso, S. Romanello, A. Buriani, S.D. Skaper, A. Leon, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 3376–3380.
[20] D. De Filippis, L. Luongo, M. Cipriano, E. Palazzo, M.P. Cinelli, V. de Novellis, S. Maione, T. Iuvone, Mol. Pain 7 (2011) 3.
[21] E. Esposito, I. Paterniti, E. Mazzon, T. Genovese, R. Di Paola, M. Galuppo, S. Cuzzocrea, Brain Behav. Immun. 25 (2011) 1099–1112.
[22] G. Sarnelli, L. Seguella, M. Pesce, J. Lu, S. Gigli, E. Bruzzese, R. Lattanzi, A. D’Alessandro, R. Cuomo, L. Steardo, G. Esposito, J. Neuroinflammation 15 (2018) 94.
[23] G. Esposito, E. Capoccia, F. Turco, I. Palumbo, J. Lu, A. Steardo, R. Cuomo, G. Sarnelli, L. Steardo, Gut 63 (2014) 1300–1312.
[24] D.G. Couch, C. Tasker, E. Theophilidou, J.N. Lund, S.E. O’Sullivan, Clin. Sci. 131 (2017) 2611–2626.
[25] D.G. Couch, H. Cook, C. Ortori, D. Barrett, J.N. Lund, S.E. O’Sullivan, Inflamm. Bowel Dis. 25 (2019) 1006–1018.
[26] M.A. Karwad, T. Macpherson, B. Wang, E. Theophilidou, S. Sarmad, D.A. Barrett, M. Larvin, K.L. Wright, J.N. Lund, S.E. O’Sullivan, FASEB J. 31 (2017) 469–481.
[27] F. Guida, S. Boccella, C. Belardo, M. Iannotta, F. Piscitelli, F. De Filippis, S. Paino, F. Ricciardi, D. Siniscalco, I. Marabese, L. Luongo, D. Ercolini, V. Di Marzo, S. Maione, Brain Behav. Immun. 85 (2020) 128–141.
[28] C. Cristiano, C. Pirozzi, L. Coretti, G. Cavaliere, A. Lama, R. Russo, F. Lembo, M.P. Mollica, R. Meli, A. Calignano, G. Mattace Raso, Brain Behav. Immun. 74 (2018) 166–175.
[29] Z. Alshelh, E.P. Mills, D. Kosanovic, F. Di Pietro, P.M. Macey, E.R. Vickers, L.A. Henderson, J. Pain Res. 12 (2019) 2427–2439.
[30] S. Boccella, C. Cristiano, R. Romano, M. Iannotta, C. Belardo, A. Farina, F. Guida, F. Piscitelli, E. Palazzo, M. Mazzitelli, R. Imperatore, L. Tunisi, V. de Novellis, L. Cristino, V. Di Marzo, A. Calignano, S. Maione, L. Luongo, Neurobiology of Disease 121 (2019) 106–119.
[31] A. Franklin, S. Parmentier-Batteur, L. Walter, D.A. Greenberg, N. Stella, J. Neurosci. 23 (2003) 7767–7775.
[32] M.I. Holubiec, J.I. Romero, J. Suárez, M. Portavella, E. Fernández-Espejo, E. Blanco, P. Galeano, F.R. de Fonseca, Psychopharmacology 235 (2018) 2929–2945.
[33] S. Beggiato, M.C. Tomasini, T. Cassano, L. Ferraro, J. Clin. Med. Res. 9 (2020).
[34] A. Ahmad, R. Crupi, D. Impellizzeri, M. Campolo, A. Marino, E. Esposito, S. Cuzzocrea, Brain Behav. Immun. 26 (2012) 1310–1321.
[35] F. Guida, L. Luongo, F. Marmo, R. Romano, M. Iannotta, F. Napolitano, C. Belardo, I. Marabese, A. D’Aniello, D. De Gregorio, F. Rossi, F. Piscitelli, R. Lattanzi, A. de Bartolomeis, A. Usiello, V. Di Marzo, V. de Novellis, S. Maione, Mol. Brain 8 (2015) 47.
[36] S.R. Andresen, J. Bing, R.M. Hansen, F. Biering-Sørensen, I.L. Johannesen, E.M. Hagen, A.S.C. Rice, J.F. Nielsen, F.W. Bach, N.B. Finnerup, Pain 157 (2016) 2097–2103.
[37] M. Ghazizadeh-Hashemi, A. Ghajar, M.-R. Shalbafan, F. Ghazizadeh-Hashemi, M. Afarideh, F. Malekpour, A. Ghaleiha, M.E. Ardebili, S. Akhondzadeh, J. Affect. Disord. 232 (2018) 127–133.
[38] K.O. Jonsson, S. Vandevoorde, D.M. Lambert, G. Tiger, C.J. Fowler, Br. J. Pharmacol. 133 (2001) 1263–1275.
[39] A.M. Moise, S.A. Eisenstein, G. Astarita, D. Piomelli, A.G. Hohmann, Psychopharmacology 200 (2008) 333–346.
[40] M. Li, D. Wang, W. Bi, Z.-E. Jiang, R. Piao, H. Yu, J. Pharmacol. Exp. Ther. 369 (2019) 163–172.
[41] S. Boccella, I. Marabese, M. Iannotta, C. Belardo, V. Neugebauer, M. Mazzitelli, G. Pieretti, S. Maione, E. Palazzo, International Journal of Molecular Sciences 20 (2019) 1757.
[42] R. Crupi, D. Impellizzeri, M. Cordaro, R. Siracusa, G. Casili, M. Evangelista, S. Cuzzocrea, Mol. Neurobiol. 55 (2018) 8455–8472.
[43] C. Scuderi, M.R. Bronzuoli, R. Facchinetti, L. Pace, L. Ferraro, K.D. Broad, G. Serviddio, F. Bellanti, G. Palombelli, G. Carpinelli, R. Canese, S. Gaetani, L. Steardo, L. Steardo, T. Cassano, Translational Psychiatry 8 (2018).
[44] B.N. Okine, M.K. Madasu, F. McGowan, C. Prendergast, J.C. Gaspar, B. Harhen, M. Roche, D.P. Finn, Pain 157 (2016) 2687–2696.
[45] E. Steels, R. Venkatesh, E. Steels, G. Vitetta, L. Vitetta, Inflammopharmacology 27 (2019) 475–485.
[46] J.M.K. Hesselink, T.A. Hekker, J. Pain Res. 5 (2012) 437–442.
[47] A. Mallard, D. Briskey, A. Richards, D. Mills, A. Rao, Nutrients 12 (2020) 596.
[48] I. Paterniti, M. Cordaro, M. Campolo, R. Siracusa, C. Cornelius, M. Navarra, S. Cuzzocrea, E. Esposito, CNS Neurol. Disord. Drug Targets 13 (2014) 1530–1541.
[49] M. Cordaro, D. Impellizzeri, I. Paterniti, G. Bruschetta, R. Siracusa, D. De Stefano, S. Cuzzocrea, E. Esposito, J. Neurotrauma 33 (2016) 132–146.
[50] E. Parrella, V. Porrini, R. Iorio, M. Benarese, A. Lanzillotta, M. Mota, M. Fusco, P. Tonin, P. Spano, M. Pizzi, Brain Res. 1648 (2016) 409–417.
[51] R. Siracusa, I. Paterniti, D. Impellizzeri, M. Cordaro, R. Crupi, M. Navarra, S. Cuzzocrea, E. Esposito, CNS Neurol. Disord. Drug Targets 14 (2015) 1350–1365.