GET 15% OFF WHEN YOU START A RECURRING ORDER! USE CODE "START" IN CHECKOUT. CANCEL ANYTIME!

MAGNESIUM GLYCINATE benefits

KEY BENEFITS OF MAGNESIUM GLYCINATE

    • Supports musculoskeletal health
    • Supports cardiovascular function
    • Supports cellular health
    • Supports sleep
    • Supports mood

ABOUT MAGNESIUM GLYCINATE

The mineral magnesium is chelated into magnesium glycinate. It is comprised of one magnesium bonded to two glycines. The two contribute to the efficient functioning of cells.

 

The body contains the most abundant mineral, magnesium, which is vital for the function of all living cells. Magnesium is present in more than 300 enzymes.

 

All enzymes that utilize ATP are dependent on magnesium since ATP is complex with magnesium. Likewise, DNA and RNA synthesizing enzymes do the same thing.

 

Magnesium plays a crucial role in both processes. A large part of magnesium's function is to break down sugars (glycolysis). The electrical functions of cells are supported by magnesium (i.e., magnesium is an electrolyte), so muscle and nerve function are dependent upon magnesium.

 

The discovery of glycine dates from the 18th century. Glycine, which has a sweet taste similar to sugar, gets its name from the Greek word for sweet. It is an amino acid classified as conditional.

 

Despite the fact that we make glycine in our bodies (i.e., it is non-essential), there are times when what we make and what we eat don't seem to be enough to optimize our functional health.

 

The body uses glycine to make many proteins. As an example, glutathione plays a vital role in antioxidant defense and detoxification in cells.

 

In addition to its role as a neurotransmitter, glycine helps make collagen throughout the body. Collagen proteins act as the best dietary source of glycine.


MAGNESIUM FULL BENEFITS

Metabolism and energy generation

 

  • Required for the synthesis of ATP by ATP synthase in mitochondria[3,4]
  • Forms a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes[5]
  • Co-factor for rate-limiting enzymes involved in carbohydrate and lipid metabolism[5,6]
  • Co-factor for rate-limiting enzymes involved protein and nucleic acid synthesis[5,6]
  • Supports insulin sensitivity[7,8]

 

Cell signaling

 

  • Supports cellular sodium and potassium influx and efflux[5]
  • Modulates calcium entry into cells so supports balanced calcium signaling[5,6]
  • Cofactor for protein phosphorylation (enzyme activation)[5,6]
  • Cofactor for the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis[9]

 

Cell structure

 

  • Stabilizes proteins, nucleic acids, chromosomes, and biological membranes[5]

 

Cardiovascular function

 

  • Supports cardiac muscle contraction and heart rhythm[6,10]
  • Supports vascular tone[6,10]
  • Supports platelet function[6,11]

 

Brain function

 

  • Supports hearing[12–18]
  • Supports neurotransmitter release and normal neurological function[6]
  • Supports the activity of the glutamate N-methyl-D-aspartate (NMDA) receptor[19,20]
  • Supports glutamate dehydrogenase (GDH) enzyme - converts glutamate to α-ketoglutarate, and vice versa[21,22]
  • Supports serotonin N-acetyltransferase - an enzyme that is involved in the day/night
  • rhythmic production of melatonin from serotonin[23,24]
  • Supports brain-derived neurotrophic factor (BDNF)[20,25,26]
  • Supports neural stem cell proliferation[27]
  • Supports brain mitochondrial function[27]

 

Mood

 

  • Supports mental well-being[28,29]

  • Supports healthy behavioral and physiological responses to stress[26,30–33]

 

Sleep

 

  • Supports sleep quality[34–37]
  • Supports healthy EEG and neuroendocrine responses during sleep[38,39]
  • Supports sleep organization and regulation[40–43]
  • Supports exercise tolerance if sleep is insufficient[44]

 

Muscle function

 

  • Required for muscle contraction[6,45]
  • Supports muscle strength[46,47]

 

Skeletal system

 

  • Supports bone metabolism/remodeling by calcium absorption[5]
  • Supports calcitonin and parathyroid hormone activity[5]
  • Supports bone formation[5]

 

Gut microbiota

 

  • Supports a healthy composition of the gut microbiota[48–50]

 

Complementary ingredients

 

  • Commonly supplemented with calcium for bone support
  • Supports vitamin D metabolism[51]
  • B-complex vitamins and melatonin supplementation for sleep support[52]
  • Zinc and melatonin supplementation for sleep support[53]
  • Vitamin B6 for mood support[54,55]
  • Hawthorn and California poppy for mood support[56]
  • Antioxidant vitamins for hearing support[57–59]

 

Structure and Function Roles

 

  • Plays an essential role in protein synthesis, especially collagen synthesis[60]
  • Providing flexibility to active sites in many enzymes[61]
  • Supports cell membrane function to promote balanced immune responses[62]

 

Protein Precursor

 

  • Precursor for synthesis of glutathione[63–65]
  • Precursor for synthesis of creatine[66]
  • Precursor for synthesis of porphyrins and heme[67]
  • Precursor for synthesis of purines[68]

 

Brain and Nervous System Function

 

  • Acts as a neurotransmitter (i.e., has its own neurotransmission system)[69–72]
  • Supports healthy glutaminergic neurotransmission[73]
  • Supports serotonergic neurotransmission[74]

 

Sleep

 

  • Supports sleep quality[75,76]
  • Reduces daytime sleepiness and fatigue; improves vigilance[75–77]
  • Supports sleep-associated cutaneous heat loss[78]
  • Supports the activity of orexin neurons[79]
  • Supports non-rapid eye movement (NREM) sleep[79]

 

Longevity / Hallmarks of Aging

 

  • Supports metabolism of glycation end products (i.e., sugar-protein cross links)[80–83]
  • Supports growth hormone secretion[84]

 

Complementary ingredients

 

  • N-Acetyl-Cysteine (NAC) for glutathione synthesis[85–87]

MAGNESIUM GLYCINATE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] S.A. Schuette, B.A. Lashner, M. Janghorbani, JPEN J. Parenter. Enteral Nutr. 18 (1994) 430–435.
[2] E. Meléndez-Hevia, P. De Paz-Lugo, A. Cornish-Bowden, M.L. Cárdenas, J. Biosci. 34 (2009) 853–872.
[3] Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[4] A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[5] S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[6] W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[7] M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[8] M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[9] S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[10] B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[11] M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[12] Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[13] J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[14] F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[15] A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[16] B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[17] J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[18] M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[19] J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[20] N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[21] L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[22] B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[23] D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[24] A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[25] B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[26] J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[27] S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[28] G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[29] N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.
[30] E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[31] L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[32] I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[33] E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[34] M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[35] M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[36] B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[37] N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[38] K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[39] H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[40] S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[41] L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[42] H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[43] D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[44] K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[45] J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[46] L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[47] L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[48] E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[49] B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[50] G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[51] Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[52] G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[53] M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[54] M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[55] V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[56] M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[57] C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.[58] J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[59] C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.
[60] M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78 (2009) 929–958.
[61] B.X. Yan, Y.Q. Sun, J. Biol. Chem. 272 (1997) 3190–3194.
[62] Z. Zhong, M.D. Wheeler, X. Li, M. Froh, P. Schemmer, M. Yin, H. Bunzendaul, B. Bradford, J.J. Lemasters, Curr. Opin. Clin. Nutr. Metab. Care 6 (2003) 229–240.
[63] S.C. Lu, Biochim. Biophys. Acta 1830 (2013) 3143–3153.
[64] A. Ruiz-Ramírez, E. Ortiz-Balderas, G. Cardozo-Saldaña, E. Diaz-Diaz, M. El-Hafidi, Clin. Sci. 126 (2014) 19–29.
[65] M.F. McCarty, J.H. O’Keefe, J.J. DiNicolantonio, Ochsner J. 18 (2018) 81–87.
[66] J.T. Brosnan, R.P. da Silva, M.E. Brosnan, Amino Acids 40 (2011) 1325–1331.
[67] G. Layer, J. Reichelt, D. Jahn, D.W. Heinz, Protein Sci. 19 (2010) 1137–1161.
[68] J.M. Berg, T.J. Tymoczko, L. Stryer, Biochemistry. New York: WH Freeman (2002).
[69] J.W. Johnson, P. Ascher, Nature 325 (1987) 529–531.
[70] H. Betz, B. Laube, J. Neurochem. 97 (2006) 1600–1610.
[71] F. Zafra, C. Giménez, IUBMB Life 60 (2008) 810–817.
[72] A.A. Ghavanini, D.A. Mathers, H.-S. Kim, E. Puil, J. Neurophysiol. 95 (2006) 3438–3448.
[73] S.F. Traynelis, L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, R. Dingledine, Pharmacol. Rev. 62 (2010) 405–496.
[74] M. Bannai, N. Kawai, K. Nagao, S. Nakano, D. Matsuzawa, E. Shimizu, Psychiatry Clin. Neurosci. 65 (2011) 142–149.
[75] W. Yamadera, K. Inagawa, S. Chiba, M. Bannai, M. Takahashi, K. Nakayama, Sleep Biol. Rhythms 5 (2007) 126–131.
[76] M. Bannai, N. Kawai, K. Ono, K. Nakahara, N. Murakami, Front. Neurol. 3 (2012) 61.
[77] K. Inagawa, T. Hiraoka, T. Kohda, W. Yamadera, M. Takahashi, Sleep Biol. Rhythms 4 (2006) 75–77.
[78] N. Kawai, N. Sakai, M. Okuro, S. Karakawa, Y. Tsuneyoshi, N. Kawasaki, T. Takeda, M. Bannai, S. Nishino, Neuropsychopharmacology 40 (2015) 1405–1416.
[79] M. Hondo, N. Furutani, M. Yamasaki, M. Watanabe, T. Sakurai, PLoS ONE 6 (2011) e25076.
[80] S. Ramakrishnan, K.N. Sulochana, Exp. Eye Res. 57 (1993) 623–628.
[81] S. Ramakrishnan, K.N. Sulochana, R. Punitham, Indian J. Biochem. Biophys. 34 (1997) 518–523.
[82] M. Cruz, C. Maldonado-Bernal, R. Mondragón-Gonzalez, R. Sanchez-Barrera, N.H. Wacher, G. Carvajal-Sandoval, J. Kumate, J. Endocrinol. Invest. 31 (2008) 694–699.
[83] F. Bahmani, S.Z. Bathaie, S.J. Aldavood, A. Ghahghaei, Mol. Vis. 18 (2012) 439–448.
[84] K. Kasai, M. Kobayashi, S.I. Shimoda, Metabolism 27 (1978) 201–208.
[85] S. Xie, L. Tian, J. Niu, G. Liang, Y. Liu, Fish Physiology and Biochemistry 43 (2017) 1011–1020.
[86] K.A. Cieslik, R.V. Sekhar, A. Granillo, A. Reddy, G. Medrano, C.P. Heredia, M.L. Entman, D.J. Hamilton, S. Li, E. Reineke, A.A. Gupte, A. Zhang, G.E. Taffet, J. Gerontol. A Biol. Sci. Med. Sci. 73 (2018) 1167–1177.
[87] S. Xie, W. Zhou, L. Tian, J. Niu, Y. Liu, Fish Shellfish Immunol. 55 (2016) 233–241.