• Supports mood
    • Supports healthy aging
    • Supports prosocial behaviors
    • Supports healthy sleep
    • Supports cell energy generation


Among other amino acids, tryptophan is essential. You must obtain it from your diet since the body cannot synthesize it.


The body can generate NAD+ molecules from L-tryptophan, which has been known for decades.

Because L-tryptophan is not derived from one of the older or newer vitamins B3, it is the only way to build NAD+.


L-tryptophan accomplishes this via de novo synthesis pathway, which creates niacin molecules via a group of biological reactions (many other important molecules are also created through this pathway).


It is this pathway that uses the majority of L-tryptophan in the morning-as much as 95%. Exercise performance can be improved by taking L-tryptophan before working out, likely because it helps to produce cellular energy.


L-tryptophan is still mostly metabolized through the de novo pathway during the night, but a larger portion is metabolized via another pathway: 5-hydroxytryptophan (5-HTP)* serotonin* melatonin. Sleep-wake cycles and body clock functions at night are regulated by this alternate pathway.


It may be because of this alternate pathway that low-to-moderate doses of L-tryptophan promote prosocial behaviors such as cooperation, empathy, and getting along with others.

Using this pathway, L-tryptophan supports healthier sleep cycles since it produces the neurohormone melatonin.


Extra L-tryptophan can be used by the body for the next 12-16 hours where it is most needed.

It is generally believed that giving extra L-tryptophan with breakfast supports both mood during the day (presumably via melatonin support) and nightly sleep (presumably via serotonin support).


A little extra L-tryptophan in the morning also helps support the body's body clock, allowing many of its daytime functions to get underway in the morning.


Prosocial behaviors may be supported by L-tryptophan supplementation. It may be possible to promote healthier sleep cycles with low-to-modest doses of L-tryptophan during the evening.


NAD(P) synthesis


  • L-tryptophan is a substrate in the de novo NAD+ synthesis pathway via the kynurenine pathway (KP)[1]
  • NAD+ can be converted to the coenzyme NADP+ by the enzyme NAD kinase[2]
  • NAD(H) and NADP(H) are key molecules in essential redox pathways of cellular metabolism and energy production[3]
  • NAD(H) is essential for the production of ATP through the citric acid cycle and oxidative phosphorylation[3]
  • NADP(H) is essential in many anabolic metabolic reactions, including DNA and RNA synthesis[3]
  • NADP(H) is a cofactor for some cytochrome P450 enzymes that detoxify xenobiotics[4]
  • NADPH also acts as a cofactor for glutathione reductase, the enzyme used to maintain reduced glutathione (GSH) levels[3]
  • NAD(H) and NADP(H) are essential for healthy aging[3]


Brain function


  • L-tryptophan is a precursor for serotonin (a neurotransmitter) and melatonin (a neurohormone) synthesis [6]
  • Substrate for serotonin synthesis [7,8]
  • Substrate for melatonin synthesis [9]
  • Supports sleep [1,10–17]


Social Cognition


  • Promotes social behaviors [18,19]
  • Supports prosocial interactions [19–24]
  • Promotes charitable behaviors [25]




    • Supports emotional processing and mental energy [26]
    • Supports a positive mental-emotional bias [12,27–29]
    • Supports a calm mood [12,27,30]
    • Supports healthy functional connectivity between the default mode network and emotion-related brain regions [31]


Exercise performance (ergogenic effect)


    • Supports power output [32,33]
    • Delays time to exertion [32,33]


Complementary ingredients


    • Nicotinic acid (niacin) and nicotinamide (niacinamide) as substrates for NAD synthesis.


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1]E. Hartmann, C.L. Spinweber, J. Nerv. Ment. Dis. 167 (1979) 497–499.

[2]A.A.-B. Badawy, Int. J. Tryptophan Res. 10 (2017) 1178646917691938.

[3]G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli, S. Ruggieri, Cell. Mol. Life Sci. 61 (2004) 19–34.

[4]W. Ying, Antioxid. Redox Signal. 10 (2008) 179–206.

[5]D.S. Riddick, X. Ding, C.R. Wolf, T.D. Porter, A.V. Pandey, Q.-Y. Zhang, J. Gu, R.D. Finn, S. Ronseaux, L.A. McLaughlin, C.J. Henderson, L. Zou, C.E. Flück, Drug Metab. Dispos. 41 (2013) 12–23.

[6]L. Palego, L. Betti, A. Rossi, G. Giannaccini, J. Amino Acids 2016 (2016) 8952520.

[7]J.D. Fernstrom, Physiol. Rev. 63 (1983) 484–546.

[8]J.D. Fernstrom, J. Nutr. Biochem. 1 (1990) 508–517.

[9]S. Esteban, C. Nicolaus, A. Garmundi, R.V. Rial, A.B. Rodríguez, E. Ortega, C.B. Ibars, Mol. Cell. Biochem. 267 (2004) 39–46.

[10]R.J. Wyatt, K. Engelman, D.J. Kupfer, D.H. Fram, A. Sjoerdsma, F. Snyder, Lancet 2 (1970) 842–846.

[11]C.F. George, T.W. Millar, P.J. Hanly, M.H. Kryger, Sleep 12 (1989) 345–353.

[12]R. Bravo, S. Matito, J. Cubero, S.D. Paredes, L. Franco, M. Rivero, A.B. Rodríguez, C. Barriga, Age 35 (2013) 1277–1285.

[13]A.N. Nicholson, B.M. Stone, Electroencephalogr. Clin. Neurophysiol. 47 (1979) 539–545.

[14]H.S. Schmidt, Bull. Eur. Physiopathol. Respir. 19 (1983) 625–629.

[15]C. Hudson, S.P. Hudson, T. Hecht, J. MacKenzie, Nutr. Neurosci. 8 (2005) 121–127.

[16]J.G. Lindsley, E.L. Hartmann, W. Mitchell, Sleep 6 (1983) 247–256.

[17]K. Demisch, J. Bauer, K. Georgi, Pharmacopsychiatry 20 (1987) 245–248.

[18]L. Steenbergen, B.J. Jongkees, R. Sellaro, L.S. Colzato, Neurosci. Biobehav. Rev. 64 (2016) 346–358.

[19]S.N. Young, Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 (2013) 20110375.

[20]D.S. Moskowitz, G. Pinard, D.C. Zuroff, L. Annable, S.N. Young, Neuropsychopharmacology 25 (2001) 277–289.

[21]A. Nantel-Vivier, R.O. Pihl, S.N. Young, S. Parent, S.A. Bélanger, R. Sutton, M.-E. Dubois, R.E. Tremblay, J.R. Séguin, PLoS One 6 (2011) e20304.

[22]K. Hogenelst, R.A. Schoevers, M. Aan Het Rot, Int. J. Neuropsychopharmacol. 18 (2015).

[23]M. aan het Rot, D.S. Moskowitz, G. Pinard, S.N. Young, J. Psychiatry Neurosci. 31 (2006) 253–262.

[24]H. Cerit, R.J. Schuur, E.R.A. de Bruijn, W. Van der Does, Front. Psychol. 6 (2015) 1012.

[25]L. Steenbergen, R. Sellaro, L.S. Colzato, Front. Psychol. 5 (2014) 1451.

[26]M.H. Mohajeri, J. Wittwer, K. Vargas, E. Hogan, A. Holmes, P.J. Rogers, R. Goralczyk, E.L. Gibson, Br. J. Nutr. 113 (2015) 350–365.

[27]G. Lindseth, B. Helland, J. Caspers, Arch. Psychiatr. Nurs. 29 (2015) 102–107.

[28]S.E. Murphy, C. Longhitano, R.E. Ayres, P.J. Cowen, C.J. Harmer, Psychopharmacology 187 (2006) 121–130.

[29]R.N. Herrington, A. Bruce, E.C. Johnstone, M.H. Lader, Psychol. Med. 6 (1977) 673–678.

[30]D.J. Bowen, B. Spring, E. Fox, J. Behav. Med. 14 (1991) 97–110.

[31]Y.I. Deza‐Araujo, P.T. Neukam, M. Marxen, D.K. Müller, T. Henle, M.N. Smolka, Hum. Brain Mapp. 40 (2019) 1844–1855.

[32]C. Javierre, R. Segura, J.L. Ventura, A. Suárez, J.M. Rosés, Int. J. Neurosci. 120 (2010) 319–327.

[33]R. Segura, J.L. Ventura, Int. J. Sports Med. 9 (1988) 301–305.