• Supports skin health
    • Supports brain function

    • Supports a healthy stress response


The amino acid L-Ornithine belongs to the family of amino acids.


Dietary intake and body production determine the amount of this nutrient in the body.


Dietary sources of protein include meat, nuts, rice, eggs, fish, soybeans, and dairy products.


Among the many tissues found in the body, ornithine is taken up by the brain, and it is highest in connective tissues, such as the skin.


A precursor to L-proline, a main structural component of connective tissues, L-ornithine is involved in the synthesis of L-proline.


This enzyme also plays a crucial role in the urea cycle, which is critical for the removal of excess nitrogen compounds, such as ammonia - these can lead to fatigue, especially in active tissues such as the brain and muscles - as well as in the synthesis of polyamines, which are needed for cell growth and tissue repair.


There are a number of brain functions that L-ornithine can impact, including hypothalamic-pituitary-adrenal (HPA) signaling and glutamate and GABA pathways.


Brain function


  • Influences the hypothalamic-pituitary-adrenal (HPA) axis [2,3]

  • Supports growth hormone signaling [3–5]

  • Supports healthy behavioral responses to stress [2,6]

  • Influences the levels of stress hormones [2,3,5,7–9]

  • Supports sleep [7,10,11]

  • Influences melatonin signaling [5,12]

  • Supports brain metabolism, oxygen utilization, and neutralization of ammonia [13–16]

  • Metabolic precursor for GABA and glutamate neurotransmitter pathways [17–22]

  • Supports brain protein synthesis [23–26]


Skin health


  • Supports skin levels of collagen-constituting amino acids [27]

  • Supports collagen deposition [28]

  • Supports wound repair functions [28]


Ergogenic actions


  • Supports maximal anaerobic exercise performance [29]

  • Supports resistance to physical fatigue [30]




  • Caffeine in supporting mood and concentration [1]

  • Caffeine in influencing the levels of stress hormone [1]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1]A. Misaizu, T. Kokubo, K. Tazumi, M. Kanayama, Y. Miura, Prev Nutr Food Sci 19 (2014) 367–372.

[2]K. Kurata, M. Nagasawa, S. Tomonaga, M. Aoki, S. Akiduki, K. Morishita, D.M. Denbow, M. Furuse, Neurosci. Lett. 506 (2012) 287–291.

[3]D. Evain-Brion, M. Donnadieu, M. Roger, J.C. Job, Clin. Endocrinol. 17 (1982) 119–122.

[4]Y.Y. Ho, J. Nakato, T. Mizushige, R. Kanamoto, M. Tanida, S. Akiduki, K. Ohinata, Food Funct. 8 (2017) 2110–2114.

[5]H. Matsuo, A. Iwamoto, T. Otsuka, Y. Hishida, S. Akiduki, M. Aoki, M. Furuse, S. Yasuo, Chronobiol. Int. 32 (2015) 225–234.

[6]K. Kurata, M. Nagasawa, S. Tomonaga, M. Aoki, K. Morishita, D.M. Denbow, M. Furuse, Nutr. Neurosci. 14 (2011) 243–248.

[7]M. Miyake, T. Kirisako, T. Kokubo, Y. Miura, K. Morishita, H. Okamura, A. Tsuda, Nutr. J. 13 (2014) 53.

[8]T. Kokubo, E. Ikeshima, T. Kirisako, Y. Miura, M. Horiuchi, A. Tsuda, Biopsychosoc. Med. 7 (2013) 6.

[9]K. Kurata, K. Shigemi, S. Tomonaga, M. Aoki, K. Morishita, D.M. Denbow, M. Furuse, Neuroscience 172 (2011) 226–231.

[10]M. Horiuchi, H. Kanesada, T. Miyata, K. Watanabe, A. Nishimura, T. Kokubo, T. Kirisako, Nutr. Res. 33 (2013) 557–564.

[11]K. Omori, Y. Kagami, C. Yokoyama, T. Moriyama, N. Matsumoto, M. Masaki, H. Nakamura, H. Kamasaka, K. Shiraishi, T. Kometani, T. Kuriki, Z.-L. Huang, Y. Urade, Sleep Biol. Rhythms 10 (2012) 38–45.

[12]T. Fukuda, A. Haraguchi, M. Takahashi, T. Nakaoka, M. Fukazawa, J. Okubo, M. Ozaki, A. Kanatome, R. Ohya, Y. Miura, K. Obara, S. Shibata, Chronobiol. Int. 35 (2018) 1445–1455.

[13]I.M. James, A.N. Hamlyn, P.C. Brant, P. Hildrew, J. Neurol. Neurosurg. Psychiatry 38 (1975) 214–218.

[14]I.M. James, G. Dorf, S. Hall, H. Michel, D. Dojcinov, G. Gravagne, L. MacDonell, Gut 13 (1972) 551–555.

[15]B.A. Vogels, O.T. Karlsen, M.A. Mass, W.M. Boveé, R.A. Chamuleau, J. Hepatol. 26 (1997) 174–182.

[16]P. Hares, I.M. James, R.M. Pearson, Stroke 9 (1978) 222–224.

[17]R.P. Shank, G.L. Campbell, J. Neurosci. Res. 9 (1983) 47–57.

[18]A. Ginguay, L. Cynober, E. Curis, I. Nicolis, Biology 6 (2017).

[19]N. Seiler, G. Daune-Anglard, Metab. Brain Dis. 8 (1993) 151–179.

[20]G. Daune, N. Seiler, Neurochem. Res. 13 (1988) 69–75.

[21]S.P. Lapinjoki, A.E. Pajunen, A.E. Pulkka, R.S. Piha, Neurochem. Res. 7 (1982) 645–655.

[22]Y. Yoneda, E. Roberts, G.W. Dietz Jr, J. Neurochem. 38 (1982) 1686–1694.

[23]K. Tujioka, T. Yamada, H. Yokogoshi, S. Akiduki, Y. Hishida, K. Tsutsui, K. Hayase, J. Nutr. Sci. Vitaminol. 63 (2017) 389–395.

[24]S. Suzumura, K. Tujioka, T. Yamada, H. Yokogoshi, S. Akiduki, Y. Hishida, K. Tsutsui, K. Hayase, J. Nutr. Sci. Vitaminol. 61 (2015) 417–421.

[25]K. Tujioka, T. Yamada, H. Abiko, M. Aoki, K. Morishita, K. Hayase, H. Yokogoshi, J. Nutr. Sci. Vitaminol. 58 (2012) 346–353.

[26]K. Tujioka, T. Yamada, M. Aoki, K. Morishita, K. Hayase, H. Yokogoshi, J. Nutr. Sci. Vitaminol. 58 (2012) 297–302.

[27]D. Harada, S. Nagamachi, K. Aso, K. Ikeda, Y. Takahashi, M. Furuse, Biochem. Biophys. Res. Commun. 512 (2019) 712–715.

[28]H.P. Shi, R.S. Fishel, D.T. Efron, J.Z. Williams, M.H. Fishel, A. Barbul, J. Surg. Res. 106 (2002) 299–302.

[29]S. Demura, K. Morishita, T. Yamada, S. Yamaji, M. Komatsu, Eur. J. Appl. Physiol. 111 (2011) 2837–2843.

[30]T. Sugino, T. Shirai, Y. Kajimoto, O. Kajimoto, Nutr. Res. 28 (2008) 738–743.