• Supports female fertility
    • Supports thyroid function
    • Supports skin health
    • Supports healthy gut microbiota
    • Supports gastrointestinal health
    • Supports insulin signaling
    • Supports cardiometabolic health
    • Supports healthy metabolism


The inositol family consists of nine different stereoisomers. Chemists call them stereoisomers.

In other words, all inositols have the same atoms and the same order in which they are bonded together, however their atoms are oriented differently in three dimensions. In an analogy, a folding beach chair with multiple positions could be used.


Inositol in the body is most commonly found in its myo-inositol form. Inositol is also widely distributed in this form.


In dietary supplements, myo-inositol is the most commonly used form of inositol.


Plasma contains the forms of D-chiro- and myo-inositol in a ratio of 40:1. As a result of this combination and ratio, far better functional responses can be achieved at much lower doses than with myo-inositol alone. (1,2)


Inositol was historically classified as part of the vitamin B-complex (it was called vitamin B8), but because it's made by the body, it's no longer considered a vitamin.


Inositol is found in many foods, but its bioavailability in plant foods such as seeds, beans, and grains is low. Besides being found in cell membrane phospholipids and plasma lipoproteins, inositol is also found (in the phosphate form) in the cell nucleus (where our DNA lives).


Insulin and thyroid function are among our main interests in inositol.


An inositol molecule serves as a second messenger, translating hormone messages outside of the cell into signals inside the cell that play a role in energy production, growth, and repair.


Mitochondrial Function


  • D-chiro-inositol supports mitochondrial structure and function [3]
  • D-chiro-inositol downregulates oxidative stress [4]
  • D-chiro-inositol upregulates AMPK activity through the LKB1-dependent pathway [4]


Insulin signaling


  • Supports healthy insulin sensitivity [1, 5–11]
  • Myo-inositol and D-chiro-inositol are precursors of intracellular second messengers of insulin signaling pathways (e.g.inositol 1,4,5-triphosphate [IP3]; phosphatidylinositol (3,4,5)-triphosphate [PIP3], D-chiro-inositol-containing-inositolphosphoglycan ([DCI-IPG]) [12, 13]
  • Myo-inositol and D-chiro-inositol stimulate the translocation to the cell membrane of the glucose transporter GLUT4 [14–16]
  • D-chiro-inositol-containing-inositolphosphoglycan (DCI-IPG) activates the pyruvate dehydrogenase complex (PDC) — supports the production acetyl-CoA to be used in the citric acid cycle [17]
  • Myo-inositol (via PIP3) and D-chiro-inositol (via DCI-IPG) stimulate glycogen synthase - support glucose storage as glycogen [18, 19] 


Cardiometabolic function


  • Supports healthy blood pressure [7, 8]
  • Supports healthy blood triglycerides and cholesterol levels [1, 7, 8, 20] 
  • Supports healthy body mass index (BMI) [7, 10]


Thyroid function


  • Inositol derivatives are second messengers in the TSH signaling pathway [21]
  • Regulates thyroid-stimulating hormone (TSH) levels [22–24]
  • Supports cellular thyroid function [22–24]


Female fertility


  • Inositol derivatives are second messengers in the FSH signaling pathway [25]
  • Regulates oocyte maturation [26–29]
  • Supports ovary function [2, 9, 20, 30]


Gut microbiota


  • Regulates the composition of the gut microbiota [31]


Complementary ingredients


  • Lipoic acid, N-acetyl cysteine - healthy insulin sensitivity [19]
  • Selenium - healthy thyroid function [22]
  • Resveratrol - healthy metabolic profile [32]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1] M. Minozzi, M. Nordio, R. Pajalich, Eur. Rev. Med. Pharmacol. Sci. 17, 537–540 (2013).
[2] M. Nordio, E. Proietti, Eur. Rev. Med. Pharmacol. Sci. 16, 575–581 (2012).
[3] B. Zhang, C. Gao, Y. Li, M. Wang, J. Ethnopharmacol. 214, 83–89 (2018).
[4] B. Zhang et al., Mol. Nutr. Food Res. 61 (2017), doi:10.1002/mnfr.201600710.
[5] V. Unfer, F. Facchinetti, B. Orrù, B. Giordani, J. Nestler, Endocr Connect. 6, 647–658 (2017).
[6] F. Corrado et al., Diabet. Med. 28, 972–975 (2011).
[7] A. Santamaria et al., Climacteric. 15, 490–495 (2012).
[8] D. Giordano et al., Menopause. 18, 102–104 (2011).
[9] E. Benelli, S. Del Ghianda, C. Di Cosmo, M. Tonacchera, Int. J. Endocrinol. 2016, 3204083 (2016).
[10] L. Pkhaladze, L. Barbakadze, N. Kvashilava, Int. J. Endocrinol. 2016, 1473612 (2016).
[11] A. D. Genazzani, C. Lanzoni, F. Ricchieri, V. M. Jasonni, Gynecol. Endocrinol. 24, 139–144 (2008).
[12] R. A. Haeusler, T. E. McGraw, D. Accili, Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).
[13] J. Larner, D. L. Brautigan, M. O. Thorner, Mol. Med. 16, 543–552 (2010).
[14] A. Yap, S. Nishiumi, K.-I. Yoshida, H. Ashida, Cytotechnology. 55, 103–108 (2007).
[15] N. T. Dang, R. Mukai, K.-I. Yoshida, H. Ashida, Biosci. Biotechnol. Biochem. 74, 1062–1067 (2010).
[16] Y. Yamashita, M. Yamaoka, T. Hasunuma, H. Ashida, K.-I. Yoshida, J. Agric. Food Chem. 61, 4850–4854 (2013).
[17] T. E. Roche et al., Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75 (2001).
[18] H. K. Ortmeyer, N. L. Bodkin, B. C. Hansen, J. Larner, J. Nutr. Biochem. 6, 499–503 (1995).
[19] C. Paul, A. S. Laganà, P. Maniglio, O. Triolo, D. M. Brady, Gynecol. Endocrinol. 32, 431–438 (2016).
[20] J. E. Nestler, D. J. Jakubowicz, P. Reamer, R. D. Gunn, G. Allan, N. Engl. J. Med. 340, 1314–1320 (1999).
[21] S. Benvenga, A. Antonelli, Rev. Endocr. Metab. Disord. 17, 471–484 (2016).
[22] M. Nordio, S. Basciani, Eur. Rev. Med. Pharmacol. Sci. 22, 2153–2159 (2018).
[23] S. M. Ferrari et al., Eur. Rev. Med. Pharmacol. Sci. 21, 36–42 (2017).
[24] M. Nordio, S. Basciani, Int. J. Endocrinol. 2017, 2549491 (2017).
[25] P. Gloaguen, P. Crépieux, D. Heitzler, A. Poupon, E. Reiter, Front. Endocrinol. . 2, 45 (2011).
[26] L. Ciotta et al., Eur. Rev. Med. Pharmacol. Sci. 15, 509–514 (2011).
[27] T. T. Y. Chiu, M. S. Rogers, C. Briton-Jones, C. Haines, Hum. Reprod. 18, 408–416 (2003).
[28] T. T. Y. Chiu et al., Hum. Reprod. 17, 1591–1596 (2002).
[29] S. G. Vitale et al., Int. J. Endocrinol. 2016, 4987436 (2016).
[30] S. Gerli, M. Mignosa, G. C. Di Renzo, Eur. Rev. Med. Pharmacol. Sci. 7, 151–159 (2003).
[31] Y. Okazaki, A. Sekita, T. Katayama, Biomed Rep. 8, 466–474 (2018).
[32] A. Malvasi et al., Clin. Ter. 168, e240–e247 (2017).