• Supports neuroprotection
    • Supports cholinergic neurotransmission
    • Supports brain function and cognitive performance


A species of fir clubmoss (also known as Lycopodium serratum), Huperzia serrata has been used in Traditional Chinese Medicine (Qian Ceng Ta).


Several bioactive compounds are found in Huperzia serrata, including lycopodium alkaloids, triterpenes, flavones, and phenolic acids.


Indirectly supporting healthy Acetylcholine levels in the brain is the alkaloid huperzine A, which is the most studied of these.


The neurotransmitter and neuromodulator acetylcholine plays an important role in cognitive function, including memory[1] mechanisms and executive functions. It also contributes to alertness, attention, and learning.


Acetylcholine is vital for different types of memory, including short- and long-term memories, as well as the formation, consolidation, and retrieval of memories.


Huperzine A enhances cognitive function by supporting acetylcholine signaling.


The antioxidant defenses of the brain and its neuroprotective functions have also been demonstrated by hyperzine A [2,3].


Brain and cognitive function


  • Supports memory and learning [4–9]
  • Supports cognitive health [4–6,8–16]
  • Supports task switching [15]
  • Supports long-term potentiation (LTP) [17]
  • Supports acetylcholine levels [2,4,5,10,18–22]
  • Supports choline acetyltransferase activity [10–13]
  • Supports dopamine release [4,19,20,22]
  • Supports noradrenaline release [4,20,22]
  • Influences NMDA glutamate receptor activity [4,23–26]
  • Supports the levels of neurotrophic factors (BDNF, NGF) [27]
  • Supports hippocampal neurogenesis [28]
  • Supports neuroprotective functions [3,4,11–13,17,20,21,27,29–35]
  • Supports brain antioxidant defenses [3,12,30–34,36]
  • Supports neurovascular health [37]
  • Supports blood-brain barrier function [37]
  • Influences neural cytokine signaling [10,37–39]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1]M.E. Hasselmo, Curr. Opin. Neurobiol. 16 (2006) 710–715.
[2]X. Ma, C. Tan, D. Zhu, D.R. Gang, P. Xiao, J. Ethnopharmacol. 113 (2007) 15–34.
[3]R. Wang, X.C. Tang, Neurosignals 14 (2005) 71–82.
[4]R. Wang, H. Yan, X.-C. Tang, Acta Pharmacol. Sin. 27 (2006) 1–26.
[5]D.H. Cheng, H. Ren, X.C. Tang, Neuroreport 8 (1996) 97–101.
[6]J. Li, H.M. Wu, R.L. Zhou, G.J. Liu, B.R. Dong, Cochrane Database Syst. Rev. (2008) CD005592.
[7]Q.Q. Sun, S.S. Xu, J.L. Pan, H.M. Guo, W.Q. Cao, Zhongguo Yao Li Xue Bao 20 (1999) 601–603.
[8]J.W. Ye, Y.Z. Shang, Z.M. Wang, X.C. Tang, Acta Pharmacol. Sin. 21 (2000) 65–69.
[9]S.S. Xu, Z.X. Gao, Z. Weng, Z.M. Du, W.A. Xu, J.S. Yang, M.L. Zhang, Z.H. Tong, Y.S. Fang, X.S. Chai, Zhongguo Yao Li Xue Bao 16 (1995) 391–395.
[10]S.-Z. Zhu, W.-P. Huang, L.-Q. Huang, Y.-L. Han, Q.-P. Han, G.-F. Zhu, M.-Y. Wen, Y.-Y. Deng, H.-K. Zeng, Neurosci. Lett. 631 (2016) 70–78.
[11]R. Wang, H.Y. Zhang, X.C. Tang, Eur. J. Pharmacol. 421 (2001) 149–156.
[12]L.M. Wang, Y.F. Han, X.C. Tang, Eur. J. Pharmacol. 398 (2000) 65–72.
[13]J. Zhou, H.Y. Zhang, X.C. Tang, Neurosci. Lett. 313 (2001) 137–140.
[14]L.Y. Ou, X.C. Tang, J.X. Cai, Eur. J. Pharmacol. 433 (2001) 151–156.
[15]A. Gul, J. Bakht, F. Mehmood, J. Chin. Med. Assoc. 82 (2019) 40–43.
[16]Z.-Q. Xu, X.-M. Liang, Juan-Wu, Y.-F. Zhang, C.-X. Zhu, X.-J. Jiang, Cell Biochem. Biophys. 62 (2012) 55–58.
[17]L. Ye, J.-T. Qiao, Neurosci. Lett. 275 (1999) 187–190.
[18]X.C. Tang, P. De Sarno, K. Sugaya, E. Giacobini, J. Neurosci. Res. 24 (1989) 276–285.
[19]Y.-Q. Liang, X.-C. Tang, Acta Pharmacol. Sin. 27 (2006) 1127–1136.
[20]Y.Q. Liang, X.T. Huang, X.C. Tang, Cell. Mol. Neurobiol. 28 (2008) 87–101.
[21]L.S. Tonduli, G. Testylier, C. Masqueliez, G. Lallement, P. Monmaur, Neurotoxicology 22 (2001) 29–37.
[22]X.D. Zhu, E. Giacobini, J. Neurosci. Res. 41 (1995) 828–835.
[23]J.M. Zhang, G.Y. Hu, Neuroscience 105 (2001) 663–669.
[24]R.K. Gordon, S.V. Nigam, J.A. Weitz, J.R. Dave, B.P. Doctor, H.S. Ved, J. Appl. Toxicol. 21 Suppl 1 (2001) S47–51.
[25]X.D. Wang, J.M. Zhang, H.H. Yang, G.Y. Hu, Zhongguo Yao Li Xue Bao 20 (1999) 31–35.
[26]Y.-H. Zhang, X.-Y. Zhao, X.-Q. Chen, Y. Wang, H.-H. Yang, G.-Y. Hu, Neurosci. Lett. 319 (2002) 107–110.
[27]Z.-F. Wang, L.-L. Tang, H. Yan, Y.-J. Wang, X.-C. Tang, Pharmacol. Biochem. Behav. 83 (2006) 603–611.
[28]T. Ma, K. Gong, Y. Yan, L. Zhang, P. Tang, X. Zhang, Y. Gong, Brain Res. 1506 (2013) 35–43.
[29]G. Lallement, J. Veyret, C. Masqueliez, S. Aubriot, M.F. Burckhart, D. Baubichon, Fundam. Clin. Pharmacol. 11 (1997) 387–394.
[30]X.Q. Xiao, R. Wang, X.C. Tang, J. Neurosci. Res. 61 (2000) 564–569.
[31]X.Q. Xiao, J.W. Yang, X.C. Tang, Neurosci. Lett. 275 (1999) 73–76.
[32]X.Q. Xiao, R. Wang, Y.F. Han, X.C. Tang, Neurosci. Lett. 286 (2000) 155–158.
[33]H.Y. Zhang, H. Yan, X.C. Tang, Cell. Mol. Neurobiol. 28 (2008) 173–183.
[34]H.Y. Zhang, X.C. Tang, Trends Pharmacol. Sci. 27 (2006) 619–625.
[35]H.S. Ved, M.L. Koenig, J.R. Dave, B.P. Doctor, Neuroreport 8 (1997) 963–968.
[36]Y.Z. Shang, J.W. Ye, X.C. Tang, Zhongguo Yao Li Xue Bao 20 (1999) 824–828.
[37]Q. Ruan, X. Hu, H. Ao, H. Ma, Z. Gao, F. Liu, D. Kong, Z. Bao, Z. Yu, Gerontology 60 (2014) 424–439.
[38]Z.F. Wang, X.C. Tang, FEBS Lett. 581 (2007) 596–602.
[39]U. Damar, R. Gersner, J.T. Johnstone, S. Schachter, A. Rotenberg, Expert Rev. Neurother. 16 (2016) 671–680.