Coenzyme Q10 | CoQ10 | ubiquinone BENEFITS

KEY BENEFITS OF COQ10

    • Supports brain function
    • Supports antioxidant defenses
    • Supports healthy aging
    • Supports mitochondrial health
    • Support cardiovascular function

ABOUT IS COQ10

The fat-soluble nutrient Coenzyme Q10 (CoQ10) contributes to cellular energy production (ATP) and antioxidant defenses, protecting membranes from oxidative stress.

 

As CoQ10 is a central component of ATP production, it is found in largest concentrations in organs that use the most energy, such as the heart, liver, and kidneys. Fish and meat, especially their organs, make excellent food sources.

 

For vegetarians, the best sources of fat are nuts, seeds, avocados, and vegetable oils.

 

On average, a person eats 3-6 mg of CoQ10 per day. (1–4)

 

The majority of CoQ10 is not found in food but is produced by the body (i.e., biosynthesis). The process of creating CoQ10 requires at least 12 genes.

 

CoQ10 is made by the human body, but may not be sufficient to meet the body's needs (5) CoQ10 production in tissues seems to decline with aging as the body ages. (6, 7)


COQ10 FULL BENEFITS

Mitochondrial biogenesis

 

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) (9, 10)
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor 2 [NRF2], mitochondrial transcription factor A [TFAM]) (10)
  • Upregulates mitochondrial DNA (mtDNA) (10)
  • Upregulates mitochondrial number (10, 11)

 

Mitochondrial function

 

  • CoQ10 is part of the electron transport chain of the inner mitochondrial membrane (12)
  • CoQ10 transfers electrons from complexes I and II to complex III by undergoing redox cycles between its three redox states (ubiquinone [fully oxidized], ubisemiquinone, and ubiquinol [fully reduced]) (12)
  • CoQ10 is critical in ATP generation via the electron transfer chain (12)
  • Supports mitochondrial complex I-V performance (10, 13, 14)
  • Promotes ATP production (11)
  • Upregulates the NAD+ pool (NAD/NADH ratio) (10)
  • Supports β-oxidation (15)
  • Downregulates NAD(P)H:quinone oxidoreductase 1 (NQO1) (16, 17) (upregulated in response to mitochondrial impairment to protect the cells against oxidative stress)

 

Mitochondrial structure

 

  • Supports mitochondrial membrane potential (11, 18)

 

Signaling pathways

 

  • Upregulates AMP-activated protein kinase (AMPK) activity (9, 10, 15, 18, 19)
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) (9, 10, 15)
  • Upregulates liver kinase B1 (LKB1) (10)
  • Upregulates cAMP (9, 10)

 

Lysosomal function

 

  • Supports the transport of protons across lysosomal membranes to maintain the optimal pH (12)
  • Supports the activity of digestive enzymes within lysosomes (12)
  • Supports the lysosomal digestion of cellular debris (12)

 

Antioxidant defenses

 

  • Coenzyme Q10 (as ubiquinol) is a potent lipid soluble antioxidant (12, 20, 21)
  • Protects from the peroxidation of cell membrane lipids and of lipoproteins in the blood(7, 20)
  • Protects from oxidative damage of proteins, lipids, and DNA (10, 20, 22)
  • Downregulates the production of reactive oxygen species (ROS) (10, 17, 18)
  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) (13, 14, 23)
  • Replenishes glutathione (GSH) levels (10)
  • Regenerates the lipophilic antioxidant alpha-tocopherol (vitamin E) (12, 21)

 

Body weight

 

  • Downregulates fat accumulation and blood/liver lipid levels (9)
  • Inhibits adipocyte differentiation and lipid accumulation (9)
  • Downregulates peroxisome proliferator-activated receptor gamma (PPARγ) (9)
  • Promotes the thermogenic function of brown adipose tissue (BAT) (9)
  • Upregulates uncoupling protein 1 (UCP1) (9)

 

Cardiovascular function

 

  • Cardioprotective effects (24–26)
  • Protects vascular function (27)
  • Protects endothelial cells against oxidative damage (19, 28)
  • Protects endothelial progenitor cells (18)
  • Supports endothelial function and blood flow (29–31)

 

Brain function

 

  • Neuroprotective against neurotoxic agents (17, 32)
  • Upregulates the number of mitochondria in the brain (32)

 

Healthy aging and longevity

 

  • Upregulates SIRT1 and SIRT3 (9, 10)
  • Protects from DNA double-strand breaks (33)
  • Extends lifespan (rats fed on a PUFA-rich diet) (33)

 

Complementary ingredients

 

  • Lipoic acid — support of mitochondrial function (34–37)
  • Creatine — neuroprotection and support of mitochondrial function (34, 35, 38)
  • L-carnitine — support of mitochondrial function (39)
  • Piperine — increases bioavailability of CoQ10 (40)
  • Vitamin B3 (NAD+ precursors) — supports improved mitochondrial performance (41)
  • Vitamin E — support of mitochondrial function (36)

COENZYME Q10 CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] C. Weber, A. Bysted, G. Hłlmer, Int. J. Vitam. Nutr. Res. 67, 123–129 (1997).
[2] P. Mattila, J. Kumpulainen, J. Food Compost. Anal. 14, 409–417 (2001).
[3] H. Kubo et al., J. Food Compost. Anal. 21, 199–210 (2008).
[4] I. Pravst, K. Zmitek, J. Zmitek, Crit. Rev. Food Sci. Nutr. 50, 269–280 (2010).
[5] J. D. Hernández-Camacho, M. Bernier, G. López-Lluch, P. Navas, Front. Physiol. 9, 44 (2018).
[6] A. Kalén, E. L. Appelkvist, G. Dallner, Lipids. 24, 579–584 (1989).
[7] L. Ernster, G. Dallner, Biochim. Biophys. Acta. 1271, 195–204 (1995).
[8] R. A. Bonakdar, E. Guarneri, Am. Fam. Physician. 72, 1065–1070 (2005).
[9] Z. Xu et al., Sci. Rep. 7, 8253 (2017).
[10] G. Tian et al., Antioxid. Redox Signal. 20, 2606–2620 (2014).
[11] M. K. Abdulhasan et al., J. Assist. Reprod. Genet. 34, 1595–1607 (2017).
[12] F. L. Crane, J. Am. Coll. Nutr. 20, 591–598 (2001).
[13] J. J. Ochoa, J. L. Quiles, J. R. Huertas, J. Mataix, J. Gerontol. A Biol. Sci. Med. Sci. 60, 970–975 (2005).
[14] J. J. Ochoa, J. L. Quiles, M. López-Frías, J. R. Huertas, J. Mataix, J. Gerontol. A Biol. Sci. Med. Sci. 62, 1211–1218 (2007).
[15] S. K. Lee et al., Cell. Signal. 24, 2329–2336 (2012).
[16] R. I. Bello et al., Exp. Gerontol. 40, 694–706 (2005).
[17] R. Won, K. H. Lee, B. H. Lee, Neuroreport. 22, 721–726 (2011).
[18] H.-Y. Tsai et al., J Diabetes Res. 2016, 6384759 (2016).
[19] K.-L. Tsai et al., Mol. Nutr. Food Res. 55 Suppl 2, S227–40 (2011).
[20] M. Bentinger, K. Brismar, G. Dallner, Mitochondrion. 7 Suppl, S41–50 (2007).
[21] P. Navas, J. M. Villalba, R. de Cabo, Mitochondrion. 7 Suppl, S34–40 (2007).
[22] M. Tomasetti, G. P. Littarru, R. Stocker, R. Alleva, Free Radic. Biol. Med. 27, 1027–1032 (1999).
[23] L. Tiano et al., Eur. Heart J. 28, 2249–2255 (2007).
[24] R. B. Singh et al., Cardiovasc. Drugs Ther. 12, 347–353 (1998).
[25] K. A. Conklin, Integr. Cancer Ther. 4, 110–130 (2005).
[26] E. I. Kalenikova, E. A. Gorodetskaya, E. G. Kolokolchikova, D. A. Shashurin, O. S. Medvedev, Biochemistry . 72, 332–338 (2007).
[27] P. K. Witting, K. Pettersson, J. Letters, R. Stocker, Free Radic. Biol. Med. 29, 295–305 (2000).
[28] K.-L. Tsai et al., J. Nutr. Biochem. 23, 458–468 (2012).
[29] G. F. Watts et al., Diabetologia. 45, 420–426 (2002).
[30] R. Belardinelli et al., Eur. Heart J. 27, 2675–2681 (2006).
[31] L. Gao et al., Atherosclerosis. 221, 311–316 (2012).
[32] R. T. Matthews, L. Yang, S. Browne, M. Baik, M. F. Beal, Proc. Natl. Acad. Sci. U. S. A. 95, 8892–8897 (1998).
[33] J. L. Quiles, J. J. Ochoa, J. R. Huertas, J. Mataix, Exp. Gerontol. 39, 189–194 (2004).
[34] M. C. Rodriguez et al., Muscle Nerve. 35, 235–242 (2007).
[35] M. Sun et al., Scand. J. Med. Sci. Sports. 22, 764–775 (2012).
[36] A. Abadi et al., PLoS One. 8, e60722 (2013).
[37] S. Silvestri et al., J. Clin. Biochem. Nutr. 57, 21–26 (2015).
[38] L. Yang et al., J. Neurochem. 109, 1427–1439 (2009).
[39] M. Shojaei, M. Djalali, M. Khatami, F. Siassi, M. Eshraghian, Iran. J. Kidney Dis. 5, 114 (2011).
[40] V. Badmaev, M. Majeed, L. Prakash, J. Nutr. Biochem. 11, 109–113 (2000).
[41] J. Castro-Marrero et al., Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants & Redox Signaling. 22 (2015), pp. 679–685.