Cocoa | Cocoa Bean | Cacao | Chocolate benefits


    • Supports visual acuity
    • Supports brain function
    • Supports exercise performance
    • Supports heart health
    • Supports healthy aging


There are at least 3,000 years of cultivation in central and south America of Theobroma cacao trees.


Chocolate (or cocoa) is often referred to as the food of the gods and can be translated as Theobroma cacao. The cocoa used in chocolate is derived from seeds (sometimes called beans).


In recent years, dark chocolate has gained a reputation for being a heart-healthy and brain-nourishing food. The cocoa content is one of the reasons for this. A more specific reason is the presence of cocoa flavanols.


Polyphenol compounds found in cocoa seeds are among the greatest sources of health-promoting compounds. These foods are particularly rich in a type of polyphenol called cocoa flavanols, such as (‐)‐epicatechin.


However, cocoa flavanol content varies widely between different chocolates and cocoa products due to the fact that many flavanols are degraded during processing. Although cocoa-based products should be a fantastic source of flavanols, it turns out that many are not.


The best cocoa extract contains a high amount of cocoa flavanols, so it's important to choose one from a source that contains a high amount of cocoa flavanols.


Mitochondrial biogenesis


  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) [1–6]
  • Upregulates cAMP-PKA-CREB signaling [7]
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM]) [2,5,6,8–10]
  • Promotes healthy nitric oxide (NO) pathway function [1,8,10]


Mitochondrial structure


  • Promotes inner mitochondrial membrane folding (cristae density) [1,2,8]
  • Upregulates mitochondrial membrane protein compounds (porin, mitofilin) [1,5,6,8,10]
  • Upregulates mitochondrial size/density/number [1,11]


Mitochondrial function


  • Supports electron transport chain and oxidative phosphorylation performance (mitochondrial complex I-V performance) [1,2,5,8–10,12–14]
  • Supports mitochondrial β-oxidation performance [11]
  • Supports citric acid cycle function via upregulation of citrate synthase [3,5,8–10,13]


Exercise performance (ergogenic effects)


  • Supports endurance performance [3,8,9,13,15,16]
  • Supports post-exercise recovery [17–19]
  • Supports muscle structure and function [8,16,20,21]
  • Promotes muscle angiogenesis/vascularity/capillarity [2,8,9,13]
  • Upregulates muscle carbohydrate metabolism [22]
  • Supports antioxidant capacity during exercise [23]


Antioxidant defenses


  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], thioredoxin [TRX]) [4,5,21]
  • Replenishes glutathione (GSH) levels [3–5,14,21,24]
  • Supports a healthy mitochondrial redox status [3,5]


Cardiovascular function


  • Supports healthy blood flow (endothelial function and endothelium/NO-dependent vasodilation)[25–29]
  • Supports healthy blood pressure [25–27,30–33]
  • Supports healthy cholesterol levels [25,26,34,35]
  • Supports healthy insulin sensitivity [25–27,30–32,36]


Brain function


  • Supports cognitive performance [7,31,37–45]
  • Supports exercise-induced executive function improvements [46]
  • Promotes motor activity [43]
  • Promotes cerebral blood flow,[41,47,48] cerebral oxygenation,[49] and angiogenesis in the hippocampus [45]
  • Cerebral antioxidant [37]
  • Central nervous system stimulant (theobromine) [50]
  • Adenosine receptor antagonist (theobromine);[50] regulates neurotransmitters modulated by adenosine – noradrenaline, dopamine, serotonin, acetylcholine, glutamate, and GABA [43]
  • Phosphodiesterase (PDE) inhibitor (theobromine) — upregulates intracellular cAMP [7](long-term potentiation support)
  • Upregulates BDNF signaling [7,51] (neurogenesis support)


Gut microbiota


  • Regulates the composition of the gut microbiota [52–55]
  • Regulates gut microbial metabolism [54,56]


Healthy aging and longevity


  • Increases lifespan (rats, diabetic mice, Drosophila melanogaster, Caenorhabditis elegans) [41,42,57]
  • Upregulates the NAD+ Pool [58]
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling [21,57]
  • Upregulates SIRT1 [1,4–6,58]
  • Upregulates SIRT3 [4–6]
  • Promotes resistance to oxidative stress [57]
  • Supports mild mitochondrial uncoupling (UCP1 increase) [6,11]
  • Upregulates signaling pathways: AMP-Activated Protein Kinase (AMPK),[3,21] liver kinase B1 (LKB1, also known as serine/threonine kinase 11 [STK11]),[3] p38 mitogen-activated protein kinases (p38 MAPK) [2]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1] Taub PR, et al. Clin Transl Sci. 2012;5(1):43-47. doi:10.1111/j.1752-8062.2011.00357.x
[2] Hüttemann M, et al. Clin Sci . 2013;124(11):663-674. doi:10.1042/CS20120469
[3] Taub PR, et al. Food Funct. 2016;7(9):3686-3693. doi:10.1039/c6fo00611f
[4] Ramirez-Sanchez I, et al. Int J Cardiol. 2013;168(4):3982-3990. doi:10.1016/j.ijcard.2013.06.089
[5] Ramirez-Sanchez I, et al. FEBS J. 2014;281(24):5567-5580. doi:10.1111/febs.13098
[6] Gutiérrez-Salmeán G, et al. Eur J Pharmacol. 2014;728:24-30. doi:10.1016/j.ejphar.2014.01.053
[7] Yoneda M, et al. J Nutr Biochem. 2017;39:110-116. doi:10.1016/j.jnutbio.2016.10.002
[8] Nogueira L, et al. J Physiol. 2011;589(Pt 18):4615-4631. doi:10.1113/jphysiol.2011.209924
[9] Lee I, et al. Front Pharmacol. 2015;6:43. doi:10.3389/fphar.2015.00043
[10] Moreno-Ulloa A, et al. Bioorg Med Chem Lett. 2013;23(15):4441-4446. doi:10.1016/j.bmcl.2013.05.079
[11] Watanabe N, et al. Lipids Health Dis. 2014;13:64. doi:10.1186/1476-511X-13-64
[12] Silva Santos LF, et al. J Arrhythm. 2017;33(3):220-225. doi:10.1016/j.joa.2016.09.004
[13] Hüttemann M, et al. FASEB J. 2012;26(4):1413-1422. doi:10.1096/fj.11-196154
[14] Rowley TJ 4th, et al. J Nutr Biochem. 2017;49:30-41. doi:10.1016/j.jnutbio.2017.07.015
[15] Patel RK, et al. J Int Soc Sports Nutr. 2015;12:47. doi:10.1186/s12970-015-0106-7
[16] Taub PR, et al. Clin Sci . 2013;125(8):383-389. doi:10.1042/CS20130023
[17] Papacosta E, et al. Appl Physiol Nutr Metab. 2015;40(11):1116-1122. doi:10.1139/apnm-2015-0243
[18] Potter J, Fuller B. J Sports Med Phys Fitness. 2015;55(12):1438-1444. PMID: 25286886.
[19] McBrier NM, et al. J Strength Cond Res. 2010;24(8):2203-2210. doi:10.1519/JSC.0b013e3181e4f7f9
[20] Gutierrez-Salmean G, et al. J Nutr Biochem. 2014;25(1):91-94. doi:10.1016/j.jnutbio.2013.09.007
[21] Si H, et al. J Nutr. 2011;141(6):1095-1100. doi:10.3945/jn.110.134270
[22] Stellingwerff T, et al. Appl Physiol Nutr Metab. 2014;39(2):173-182. doi:10.1139/apnm-2013-0152
[23] Decroix L, et al. J Int Soc Sports Nutr. 2017;14:28. doi:10.1186/s12970-017-0186-7
[24] Barragán Mejía G, et al. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(6):499-504. doi:10.1007/s00210-011-0676-0
[25] Grassi D, et al. Hypertension. 2005;46(2):398-405. doi:10.1161/01.HYP.0000174990.46027.70
[26] Grassi D, et al. J Nutr. 2008;138(9):1671-1676. doi:10.1093/jn/138.9.1671
[27] Davison K, et al. Int J Obes . 2008;32(8):1289-1296. doi:10.1038/ijo.2008.66
[28] Fisher NDL, et al. J Hypertens. 2003;21(12):2281-2286. doi:10.1097/01.hjh.0000084783.15238.eb
[29] Schroeter H, et al. Proc Natl Acad Sci U S A. 2006;103(4):1024-1029. doi:10.1073/pnas.0510168103
[30] Grassi D, et al. Am J Clin Nutr. 2005;81(3):611-614. doi:10.1093/ajcn/81.3.611
[31] Desideri G, et al. Hypertension. 2012;60(3):794-801. doi:10.1161/HYPERTENSIONAHA.112.193060
[32] Hooper L, et al. Am J Clin Nutr. 2012;95(3):740-751. doi:10.3945/ajcn.111.023457
[33] Ried K, et al. Cochrane Database Syst Rev. 2012;(8):CD008893. doi:10.1002/14651858.CD008893.pub2
[34] Mellor DD, et al. Diabet Med. 2010;27(11):1318-1321. doi:10.1111/j.1464-5491.2010.03108.x
[35] Neufingerl N, et al. Am J Clin Nutr. 2013;97(6):1201-1209. doi:10.3945/ajcn.112.047373
[36] Esser D, et al. PLoS One. 2018;13(4):e0194229. doi:10.1371/journal.pone.0194229
[37] Rozan P, et al. J Food Sci. 2007;72(3):S203-S206. doi:10.1111/j.1750-3841.2007.00297.x
[38] Field DT, et al. Physiol Behav. 2011;103(3-4):255-260. doi:10.1016/j.physbeh.2011.02.013
[39] Nurk E, et al. J Nutr. 2009;139(1):120-127. doi:10.3945/jn.108.095182
[40] Scholey AB, et al. J Psychopharmacol. 2010;24(10):1505-1514. doi:10.1177/0269881109106923
[41] Sorond FA, et al. Neuropsychiatr Dis Treat. 2008;4(2):433-440. PMID: 18728792.
[42] Bisson J-F, et al. Br J Nutr. 2008;100(1):94-101. doi:10.1017/S0007114507886375
[43] Burnstock G. Adv Exp Med Biol. 2013;986:1-12. doi:10.1007/978-94-007-4719-7_1
[44] Camfield DA, et al. Physiol Behav. 2012;105(4):948-957. doi:10.1016/j.physbeh.2011.11.013
[45] van Praag H, et al. J Neurosci. 2007;27(22):5869-5878. doi:10.1523/JNEUROSCI.0914-07.2007
[46] Tsukamoto H, et al. Nutrition. 2018;46:90-96. doi:10.1016/j.nut.2017.08.017
[47] Fisher NDL, et al. J Cardiovasc Pharmacol. 2006;47 Suppl 2:S210-S214. PMID: 16794460.
[48] Francis ST, et al. J Cardiovasc Pharmacol. 2006;47 Suppl 2:S215-S220. PMID: 16794461.
[49] Decroix L, et al. Appl Physiol Nutr Metab. 2016;41(12):1225-1232. doi:10.1139/apnm-2016-0245
[50] Franco R, et al. Nutrients. 2013;5(10):4159-4173. doi:10.3390/nu5104159
[51] Cimini A, et al. J Cell Biochem. 2013;114(10):2209-2220. doi:10.1002/jcb.24548
[52] Camps-Bossacoma M, et al. Oxid Med Cell Longev. 2017;2017:7417505. doi:10.1155/2017/7417505
[53] Tzounis X, et al. Am J Clin Nutr. 2011;93(1):62-72. doi:10.3945/ajcn.110.000075
[54] Fogliano V, et al. Mol Nutr Food Res. 2011;55 Suppl 1:S44-S55. doi:10.1002/mnfr.201000360
[55] Massot-Cladera M, et al. Arch Biochem Biophys. 2012;527(2):105-112. doi:10.1016/
[56] Martin F-PJ, et al. J Proteome Res. 2009;8(12):5568-5579. doi:10.1021/pr900607v
[57] Martorell P, et al. J Agric Food Chem. 2011;59(5):2077-2085. doi:10.1021/jf104217g
[58] Duarte DA, et al. J Nutr Biochem. 2015;26(1):64-74. doi:10.1016/j.jnutbio.2014.09.003