Citicoline | CDP-choline | Cytidine 5'-diphosphocholine BENEFITS

KEY BENEFITS OF CITICOLINE

    • Supports brain health and cognitive performance
    • Supports focus and attention
    • Supports mental energy

ABOUT CITICOLINE

Citicoline is the intermediate in the production of phosphatidylcholine from choline, consisting of both choline and cytidine.

 

A choline supplement can enhance the body's and the brain's choline pools.

 

The nootropic types of choline include citicoline and alpha-glycerophosphocholine (Alpha-GPC), both of which increase brain choline levels, serve as building blocks for acetylcholine, and help to support choline-dependent functions.

 

Citicoline is converted into cytidine and choline upon ingestion [1,2], with the latter becoming uridine in the body [3]. By using these compounds, healthy cell membranes can produce phosphatidylcholine, which is required for their structure and function [4,5]. Acetylcholine can also be synthesized from phosphatidylcholine [6,7].

 

In addition to being important for neurotransmission in the brain, Acetylcholine plays an important role in memory, attention, and concentration. In addition to its use in muscle activation, acetylcholine is also used in autonomic nervous system functions such as fight or flight and rest and relaxation.

 

Cognizin® is a branded form of citicoline (CDP-choline), which helps support brain health, cognition, focus, and recall.


CITICOLINE FULL BENEFITS

Choline donor

 

  • Citicoline is part of the Kennedy (or CDP-choline) pathway, which has a central role in choline homeostasis [8–10]
  • Supports plasma levels of choline [11]
  • Supports plasma levels of uridine [11]
  • Precursor for phosphatidylcholine synthesis [4,5,7]
  • Precursor for acetylcholine synthesis [6,7]

 

Brain and cognitive function

 

  • Supports memory and learning [12–18]
  • Supports working memory [18]
  • Supports attention [19,20]
  • Supports processing speed [18]
  • Supports executive function [18]
  • Supports cognitive health [12,16,17,21]
  • Supports brain energetics and ATP [22]
  • Supports acetylcholine synthesis and release [6,7,21]
  • Supports cholinergic neurotransmission [23,24]
  • Supports brain phospholipid synthesis [7,22,25–27]
  • Supports brain mitochondrial phospholipid and protein production [28,29]
  • Supports dopamine release [30,31]
  • Supports dopaminergic neurotransmission [24,32]
  • Supports brain (frontal lobe) bioenergetics [22]
  • Supports brain bioelectrical activity [12]
  • Supports cerebral blood flow [12]
  • Supports brain plasticity [33]
  • Supports neuroprotective functions [21,26,27,33–40]
  • Supports neuronal cell membrane stabilization [26,36]
  • Supports brain glutathione levels [27]
  • Supports brain SIRT1 levels [38]

COGNIZIN CITICOLINE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1]K. Yashima, M. Takamatsu, K. Okuda, J. Nutr. Sci. Vitaminol. 21 (1975) 49–60.
[2]I. Lopez G. -coviella, J. Agut, R. Von Borstel, R.J. Wurtman, Neurochem. Int. 11 (1987) 293–297.
[3]M. Cansev, Brain Res. Rev. 52 (2006) 389–397.
[4]J. Agut, E. Font, A. Sacristán, J.A. Ortiz, Arzneimittelforschung 33 (1983) 1048–1050.
[5]P. Galletti, M. De Rosa, M.G. Cotticelli, A. Morana, R. Vaccaro, V. Zappia, J. Neurol. Sci. 103 Suppl (1991) S19–25.
[6]I.H. Ulus, R.J. Wurtman, C. Mauron, J.K. Blusztajn, Brain Res. 484 (1989) 217–227.
[7]G.B. Weiss, Life Sci. 56 (1995) 637–660.
[8]F. Gibellini, T.K. Smith, IUBMB Life 62 (2010) 414–428.
[9]Z. Li, D.E. Vance, J. Lipid Res. 49 (2008) 1187–1194.
[10]P. Fagone, S. Jackowski, Biochim. Biophys. Acta 1831 (2013) 523–532.
[11]R.J. Wurtman, M. Regan, I. Ulus, L. Yu, Biochem. Pharmacol. 60 (2000) 989–992.
[12]X.A. Alvarez, R. Mouzo, V. Pichel, P. Perez, M. Laredo, L. Fernandez-Novoa, L. Corzo, R. Zas, M. Alcaraz, J.J. Secades, Others, Methods Find. Exp. Clin. Pharmacol. 21 (1999) 633.
[13]P.A. Spiers, D. Myers, G.S. Hochanadel, H.R. Lieberman, R.J. Wurtman, Arch. Neurol. 53 (1996) 441–448.
[14]X.A. Alvarez, M. Laredo, D. Corzo, L. Fernández-Novoa, R. Mouzo, J.E. Perea, D. Daniele, R. Cacabelos, Methods Find. Exp. Clin. Pharmacol. 19 (1997) 201–210.
[15]V.D. Petkov, A.H. Mosharrof, R. Kehayov, V.V. Petkov, E. Konstantinova, D. Getova, Methods Find. Exp. Clin. Pharmacol. 14 (1992) 593–605.
[16]A.H. Mosharrof, V.D. Petkov, Acta Physiol. Pharmacol. Bulg. 16 (1990) 25–31.
[17]L.A. Teather, R.J. Wurtman, Prog. Neuropsychopharmacol. Biol. Psychiatry 27 (2003) 711–717.
[18]V. Knott, S. de la Salle, J. Choueiry, D. Impey, D. Smith, M. Smith, E. Beaudry, S. Saghir, V. Ilivitsky, A. Labelle, Pharmacol. Biochem. Behav. 131 (2015) 119–129.
[19]E. McGlade, A. Locatelli, J. Hardy, T. Kamiya, M. Morita, K. Morishita, Y. Sugimura, D. Yurgelun-Todd, FNS 03 (2012) 769–773.
[20]E. McGlade, A.M. Agoston, J. DiMuzio, M. Kizaki, E. Nakazaki, T. Kamiya, D. Yurgelun-Todd, J. Atten. Disord. 23 (2019) 121–134.
[21]C.E. Dixon, X. Ma, D.W. Marion, J. Neurotrauma 14 (1997) 161–169.
[22]M.M. Silveri, J. Dikan, A.J. Ross, J.E. Jensen, T. Kamiya, Y. Kawada, P.F. Renshaw, D.A. Yurgelun-Todd, NMR Biomed. 21 (2008) 1066–1075.
[23]S.K. Tayebati, D. Tomassoni, A. Di Stefano, P. Sozio, L.S. Cerasa, F. Amenta, J. Neurol. Sci. 302 (2011) 49–57.
[24]R. Giménez, J. Raïch, J. Aguilar, Br. J. Pharmacol. 104 (1991) 575–578.
[25]S.M. Babb, L.L. Wald, B.M. Cohen, R.A. Villafuerte, S.A. Gruber, D.A. Yurgelun-Todd, P.F. Renshaw, Psychopharmacology 161 (2002) 248–254.
[26]A.M. Rao, J.F. Hatcher, R.J. Dempsey, J. Neurochem. 75 (2008) 2528–2535.
[27]R.M. Adibhatla, J.F. Hatcher, R.J. Dempsey, Stroke (2001).
[28]M. Alberghina, M. Viola, I. Serra, A. Mistretta, A.M. Giuffrida, J. Neurosci. Res. 6 (1981) 421–433.
[29]R.F. Villa, F. Ingrao, G. Magri, A. Gorini, S. Reale, A. Costa, N. Ragusa, R. Avola, A.M. Giuffrida-Stella, Int. J. Dev. Neurosci. 11 (1993) 83–93.
[30]J. Agut, J.A. Ortiz, R.J. Wurtman, Ann. N. Y. Acad. Sci. 920 (2006) 332–335.
[31]M. Shibuya, N. Kageyama, T. Taniguchi, H. Hidaka, M. Fujiwara, Jpn. J. Pharmacol. 31 (1981) 47–52.
[32]S.K. Tayebati, D. Tomassoni, I.E. Nwankwo, A. Di Stefano, P. Sozio, L.S. Cerasa, F. Amenta, CNS & Neurological Disorders - Drug Targets 12 (2013) 94–103.
[33]M. Gutiérrez-Fernández, B. Rodríguez-Frutos, B. Fuentes, M.T. Vallejo-Cremades, J. Alvarez-Grech, M. Expósito-Alcaide, E. Díez-Tejedor, Neurochem. Int. 60 (2012) 310–317.
[34]J.L. Saver, Rev. Neurol. Dis. 5 (2008) 167–177.
[35]A. Dávalos, J. Castillo, J. Alvarez-Sabín, J.J. Secades, J. Mercadal, S. López, E. Cobo, S. Warach, D. Sherman, W.M. Clark, R. Lozano, Stroke 33 (2002) 2850–2857.
[36]R.V. Dorman, Z. Dabrowiecki, L.A. Horrocks, J. Neurochem. 40 (1983) 276–279.
[37]J. Krupinski, I. Ferrer, M. Barrachina, J.J. Secades, J. Mercadal, R. Lozano, Neuropharmacology 42 (2002) 846–854.
[38]O. Hurtado, M. Hernández-Jiménez, J.G. Zarruk, M.I. Cuartero, I. Ballesteros, G. Camarero, A. Moraga, J.M. Pradillo, M.A. Moro, I. Lizasoain, J. Neurochem. 126 (2013) 819–826.
[39]R.J. Dempsey, V.L. Raghavendra Rao, J. Neurosurg. 98 (2003) 867–873.
[40]K. Radad, G. Gille, J. Xiaojing, N. Durany, W.-D. Rausch, Int. J. Neurosci. 117 (2007) 985–998.