GET 15% OFF WHEN YOU START A RECURRING ORDER! USE CODE "START" IN CHECKOUT. CANCEL ANYTIME!

Coffeeberry® | Coffee Fruit | Coffee Cherry | Coffee Berry BENEFITS

KEY BENEFITS OF COFFEEBERRY®

 

    • Supports exercise performance
    • Supports mood
    • Supports cognitive performance

ABOUT COFFEEBERRY®

Organic coffee fruits—often known as coffee cherries—are used to make Coffeeberry®.

 

Like cherries, coffee plants bear soft red fruits containing a hard seed or pit. To make coffee, the seed (or "bean") must be roasted. However, Coffeeberry® is made from the fruit. Coffee cherries contain polyphenols like many other fruits.

 

Caffeine is also present in them, just like in coffee beans. There are over 120 varieties of Coffea. Coffea arabica is the most popular species (commonly referred to simply as "Arabica").

 

Coffeeberry® is produced on sustainable farms from Arabica coffee plants. When the fruits are ripe, they are handpicked.

 

We can benefit physically and mentally from caffeine, which is found in coffee, tea, and energy drinks.* It promotes arousal, which is necessary for paying attention and reacting quickly.

 

It is not surprising, therefore, that caffeine has become one of the most commonly used and studied substances both for sports performance and brain function. Although caffeine is often the focus of research, coffee polyphenols have been shown to benefit the body.

 

Most nootropics use pure caffeine, but a better approach is to use an extract of coffee fruit that provides caffeine as well as naturally occurring polyphenols.


COFFEEBERRY® FULL BENEFITS

Brain function

 

  • Adenosine receptor antagonist [2]
  • Adenosine decreases the levels of the neurotransmitters acetylcholine, glutamate, serotonin, dopamine and norepinephrine; blocking adenosine receptors, caffeine counters those effects [3,4]
  • Upregulates acetylcholine signaling [4–7]
  • Upregulates dopamine signaling [4,8–13]
  • Upregulates serotonin signaling [4,7,14–17]
  • Upregulates glutamate signaling [4,8,9]
  • Upregulates GABA signaling [4,7]
  • Upregulates noradrenaline signaling [4,16]
  • Upregulates cortical activation in the brain [2,4]
  • Upregulates cerebral metabolism [2,4]
  • Promotes wakefulness [18]

 

Cognitive function

 

  • Supports cognitive performance [1,4,19–22]
  • Supports executive function [23–25]
  • Supports information processing rate [2,26,27]
  • Supports simple and sustained attention [1,23,27,28]
  • Supports vigilance [1,28]
  • Supports task switching [27]
  • Supports reaction time [1,21,22,27]
  • Supports reasoning [20]
  • Supports creative thinking [24]
  • Protects from mental fatigue [26,28]

 

Neuroprotection

 

  • Protects against neurotoxic agents [29]
  • Protects from neurodegenerative processes [30]

 

Mood

 

  • Improves mood [4,21,22,25,31]

 

Physical performance

 

  • Protects from physical fatigue [19,22,23,32]
  • Decreases perceived exhaustion [1]
  • Supports muscle endurance and strength exercise activities [1]
  • Enhances speed, power, and agility during intense exercise [1]

 

Other effects

 

  • Upregulates the metabolic rate [33–35]
  • Non-selective phosphodiesterase inhibitor [36]

 

Complementary ingredients

 

  • Theobromine as a CNS stimulant, with faster onset and shorter duration than Theobromine [37]
  • L-Theanine in cognitive performance [26,38–40]
  • Choline donors (e.g., citicoline, alpha-GPC) to support attention, concentration, and working memory [41]
  • L-ornithine to support enhanced mood and cognitive performance [42]

CAFFEINE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] T.M. McLellan, J.A. Caldwell, H.R. Lieberman, Neurosci. Biobehav. Rev. 71 (2016) 294–312.
[2] G. Burnstock, Advances in Experimental Medicine and Biology 986 (2013) 1–12.
[3] B.B. Fredholm, Pharmacol. Toxicol. 76 (1995) 93–101.
[4] B.B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, E.E. Zvartau, Pharmacol. Rev. 51 (1999) 83–133.
[5] E. Acquas, G. Tanda, G. Di Chiara, Neuropsychopharmacology 27 (2002) 182–193.
[6] A.J. Carter, W.T. O’Connor, M.J. Carter, U. Ungerstedt, J. Pharmacol. Exp. Ther. 273 (1995) 637–642.
[7] D. Shi, O. Nikodijević, K.A. Jacobson, J.W. Daly, Cell. Mol. Neurobiol. 13 (1993) 247–261.
[8] G. Racchetti, A. Lorusso, C. Schulte, D. Gavello, V. Carabelli, R. D’Alessandro, J. Meldolesi, J. Cell Sci. 123 (2010) 165–170.
[9] D. Quarta, J. Borycz, M. Solinas, K. Patkar, J. Hockemeyer, F. Ciruela, C. Lluis, R. Franco, A.S. Woods, S.R. Goldberg, S. Ferré, J. Neurochem. 91 (2004) 873–880.
[10] B.E. Garrett, S.G. Holtzman, Eur. J. Pharmacol. 262 (1994) 65–75.
[11] K.R. Powell, P.M. Iuvone, S.G. Holtzman, Pharmacol. Biochem. Behav. 69 (2001) 59–70.
[12] M. Solinas, S. Ferré, Z.-B. You, M. Karcz-Kubicha, P. Popoli, S.R. Goldberg, J. Neurosci. 22 (2002) 6321–6324.
[13] X. Zheng, S. Takatsu, H. Wang, H. Hasegawa, Pharmacol. Biochem. Behav. 122 (2014) 136–143.
[14] D.J. Haleem, A. Yasmeen, M.A. Haleem, A. Zafar, Life Sci. 57 (1995) PL285–92.
[15] S. Khaliq, S. Haider, F. Naqvi, T. Perveen, S. Saleem, D.J. Haleem, Pak. J. Pharm. Sci. 25 (2012) 21–25.
[16] M.D. Chen, W.H. Lin, Y.M. Song, P.Y. Lin, L.T. Ho, Zhonghua Yi Xue Za Zhi 53 (1994) 257–261.
[17] M. Okada, Y. Kawata, K. Kiryu, K. Mizuno, K. Wada, H. Tasaki, S. Kaneko, J. Neurochem. 69 (2002) 2581–2588.
[18] T. Porkka-Heiskanen, Handb. Exp. Pharmacol. (2011) 331–348.
[19] V. Maridakis, P.J. O’Connor, P.D. Tomporowski, Int. J. Neurosci. 119 (2009) 1239–1258.
[20] M.J. Jarvis, Psychopharmacology 110 (1993) 45–52.
[21] A. Nehlig, J. Alzheimers. Dis. 20 Suppl 1 (2010) S85–94.
[22] C.H.S. Ruxton, Nutr. Bull. 33 (2008) 15–25.
[23] J. Lanini, J.C.F. Galduróz, S. Pompéia, Hum. Psychopharmacol. 31 (2016) 29–43.
[24] K. Soar, E. Chapman, N. Lavan, A.S. Jansari, J.J.D. Turner, Appetite 105 (2016) 156–163.
[25] F.L. Dodd, D.O. Kennedy, L.M. Riby, C.F. Haskell-Ramsay, Psychopharmacology 232 (2015) 2563–2576.
[26] C.F. Haskell, D.O. Kennedy, A.L. Milne, K.A. Wesnes, A.B. Scholey, Biol. Psychol. 77 (2008) 113–122.
[27] S.J.L. Einöther, T. Giesbrecht, Psychopharmacology 225 (2013) 251–274.
[28] A. Smith, Food Chem. Toxicol. 40 (2002) 1243–1255.
[29] M.A. Schwarzschild, K. Xu, E. Oztas, J.P. Petzer, K. Castagnoli, N. Castagnoli Jr, J.-F. Chen, Neurology 61 (2003) S55–61.
[30] M. Kolahdouzan, M.J. Hamadeh, CNS Neurosci. Ther. 23 (2017) 272–290.
[31] S.H. Backhouse, S.J.H. Biddle, N.C. Bishop, C. Williams, Appetite 57 (2011) 247–252.
[32] J.M. Davis, Z. Zhao, H.S. Stock, K.A. Mehl, J. Buggy, G.A. Hand, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R399–404.
[33] K.J. Acheson, B. Zahorska-Markiewicz, P. Pittet, K. Anantharaman, E. Jéquier, Am. J. Clin. Nutr. 33 (1980) 989–997.
[34] A. Astrup, S. Toubro, S. Cannon, P. Hein, L. Breum, J. Madsen, Am. J. Clin. Nutr. 51 (1990) 759–767.
[35] J. LeBlanc, M. Jobin, J. Côté, P. Samson, A. Labrie, J. Appl. Physiol. 59 (1985) 832–837.
[36] O.H. Choi, M.T. Shamim, W.L. Padgett, J.W. Daly, Life Sci. 43 (1988) 387–398.
[37] R. Franco, A. Oñatibia-Astibia, E. Martínez-Pinilla, Nutrients 5 (2013) 4159–4173.
[38] S.J.L. Einöther, V.E.G. Martens, J.A. Rycroft, E.A. De Bruin, Appetite 54 (2010) 406–409.
[39] T. Giesbrecht, J.A. Rycroft, M.J. Rowson, E.A. De Bruin, Nutr. Neurosci. 13 (2010) 283–290.
[40] G.N. Owen, H. Parnell, E.A. De Bruin, J.A. Rycroft, Nutr. Neurosci. 11 (2008) 193–198.
[41] S.E. Bruce, K.B. Werner, B.F. Preston, L.M. Baker, Int. J. Food Sci. Nutr. 65 (2014) 1003–1007.
[42] A. Misaizu, T. Kokubo, K. Tazumi, M. Kanayama, Y. Miura, Prev Nutr Food Sci 19 (2014) 367–372.