• Enhances mitochondrial function and cellular energy
    • Promotes exercise performance
    • Improves metabolism
    • Supports healthy weight
    • Boosts antioxidant defenses
    • Promotes healthy cell function
    • Helps maintain cardiovascular health
    • Enhances brain function
    • Protects the kidneys
    • Promotes a healthy gut microbiome


Among flavonoids, apigenin belongs to the flavone family. Flavonoids are found in a variety of fruits and vegetables, such as celery and parsley, which are common sources.
The flowers used to make chamomile tea contain high amounts of this substance. Researchers have reported that apigenin supports cardiovascular, brain, and renal functions, as well as metabolic benefits.
NAD+ is indirectly increased by modulating the activity of the CD38 NAD+-consuming pathway. In addition to antioxidant defenses, apigenin also boosts mitochondrial cellular energy.


Mitochondrial biogenesis


  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) [1]
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (TFAM) [1]
  • Upregulates mitochondrial size/density/number  [1]


Mitochondrial function


  • Protects from mitochondrial dysfunction [1,2]
  • Upregulates electron transport chain and oxidative phosphorylation proteins/genes (supports ATP production) [1,3]
  • Protects from complex I-V inhibition [2,4]
  • Supports NAD+ generation - inhibits CD38 [5]
  • Upregulates citric acid cycle proteins/genes [3]


Signaling pathways


  • Upregulates AMP-activated protein kinase (AMPK) [1,6–11]
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) [5,8,23 12,13]
  • Upregulates liver kinase B1 (LKB1) [9]


Exercise performance (ergogenic effect)


  • Supports endurance performance [1]
  • Supports muscle structure/function [1]




  • Supports healthy blood glucose levels [1,3,5,12,14]
  • Supports healthy insulin sensitivity [1,3]
  • Upregulates fatty acid metabolism proteins/genes [3]
  • Supports β-oxidation (fatty acid metabolism) [5]


Body weight


  • Downregulates fat accumulation and blood/liver lipid levels [1,3,6,13,14]
  • Downregulates adipocyte differentiation and lipid accumulation [7]
  • Downregulates adipogenesis - downregulates peroxisome proliferator-activated receptor gamma (PPARγ) [3]
  • Upregulates lean mass [1]


Cellular signaling


  • Downregulates the expression of proinflammatory cytokines – tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), IL-6 [1,3,13,15,16]
  • Downregulates nuclear factor NF-κB signaling [4,13–15]


Antioxidant defenses


  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [12–14,16–19]
  • Downregulates the generation of reactive oxygen species [2,8,17]
  • Replenishes glutathione (GSH) levels [12,13,17,18]


Cardiovascular function


  • Supports ECG parameters, hemodynamics, and left ventricular function [12]
  • Protects from cardiac injury and dysfunction [4,12,20]
  • Protects from vascular damage [2,14]
  • Supports healthy vascular function [6,8]
  • Supports healthy blood pressure  [8]
  • Supports healthy cholesterol levels [6,14]


Brain function


  • Neuroprotective effects [16,17]
  • Protects cognitive function [18]
  • Downregulates amyloid-beta accumulation [18]


Gut microbiota


  • Regulates the composition of the gut microbiota [21,22]
  • Modulates gut microbial gene expression [22]


Healthy aging and longevity


  • Upregulates SIRT-1  [8]
  • Downregulates mTOR signaling [9,11,15,20,23,24]
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling [25,26]


Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped


IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


[1] Choi WH, et al. Mol Nutr Food Res. 2017;61(12). doi:10.1002/mnfr.201700218
[2] Duarte S, et al. Int J Mol Sci. 2013;14(9):17664-17679. doi:10.3390/ijms140917664
[3] Jung UJ, et al. Nutrients. 2016;8(5). doi:10.3390/nu8050305
[4] Cardenas H, et al. Int J Mol Sci. 2016;17(3):323. doi:10.3390/ijms17030323
[5] Escande C, et al. Diabetes. 2013;62(4):1084-1093. doi:10.2337/db12-1139
[6] Wong TY, et al. Biomed Pharmacother. 2017;96:1000-1007. doi:10.1016/j.biopha.2017.11.131
[7] Ono M, Fujimori K. J Agric Food Chem. 2011;59(24):13346-13352. doi:10.1021/jf203490a
[8] Wei X, et al. Clin Sci . 2017;131(7):567-581. doi:10.1042/CS20160780
[9] Tong X, et al. Mol Carcinog. 2012;51(3):268-279. doi:10.1002/mc.20793
[10] Zang M, et al. Diabetes. 2006;55(8):2180-2191. doi:10.2337/db05-1188
[11] Bridgeman BB, et al. Cell Signal. 2016;28(5):460-468. doi:10.1016/j.cellsig.2016.02.008
[12] Mahajan UB, et al. Int J Mol Sci. 2017;18(4). doi:10.3390/ijms18040756
[13] Wang F, et al. Chem Biol Interact. 2017;275:171-177. doi:10.1016/j.cbi.2017.08.006
[14] Ren B, et al. Eur J Pharmacol. 2016;773:13-23. doi:10.1016/j.ejphar.2016.01.002
[15] Kim A, Lee CS. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(3):271-283. doi:10.1007/s00210-017-1454-4
[16] Zhang F, et al. Neurol Sci. 2014;35(4):583-588. doi:10.1007/s10072-013-1566-7
[17] Han Y, et al. J Clin Neurosci. 2017;40:157-162. doi:10.1016/j.jocn.2017.03.003
[18] Zhao L, et al. Molecules. 2013;18(8):9949-9965. doi:10.3390/molecules18089949
[19] Nielsen SE, et al. Br J Nutr. 1999;81(6):447-455.
[20] Yu W, et al. Evid Based Complement Alternat Med. 2017;2017:2590676. doi:10.1155/2017/2590676
[21] Li L, Somerset S. Nutrients. 2018;10(9). doi:10.3390/nu10091264
[22] Wang M, et al. Molecules. 2017;22(8). doi:10.3390/molecules22081292
[23] Stump TA, et al. J Pharm Pharmacol. 2017;69(7):907-916. doi:10.1111/jphp.12718
[24] Yang J, et al. Biomed Pharmacother. 2018;103:699-707. doi:10.1016/j.biopha.2018.04.072
[25] Babcook MA, Gupta S. ACurr Drug Targets. November 2012. PMID: 23140291.
[26] Shukla S, et al. Pharm Res. 2012;29(6):1506-1517. doi:10.1007/s11095-011-0625-0